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Adaptive fuzzy control for synchronization of
coronary artery system with input nonlinearity

Zhanshan Zhao, Haoliang Cui, Jing Zhang and Jie Sun

Abstract—In this paper, we propose a parametric adaptive
control strategy for synchronization of Takagi-Sugeno(T-S) fuzzy
coronary artery system. We use the T-S fuzzy model to represent
the coronary artery system because the coronary artery system
has complicated nonlinear characteristic in reality. Based on
the new model, a fuzzy parametric adaptive output feedback
controller is designed to achieve the H∞ synchronization of
coronary artery system with input nonlinearity and parameter
perturbations. Some simulation results are given to illustrate the
effectiveness of our control strategy.

Index Terms—Coronary artery system, Adaptive control,
Fuzzy model, Input nonlinear, H∞ synchronization.

I. INTRODUCTION

CHAOS synchronization has been paid considerable at-
tention among the scientists from biological engineering

field such as epidemic diseases, nervous system and coronary
artery system(CAS) [1, 2]. From the perspective of biology,
CAS maintains our life by delivering oxygen and nutrition
to myocardium. Once blood vessel of the coronary artery ob-
structed by thrombus, patients will suffering from a dangerous
disease named myocardial infarction(MI). Therefore a lot of
efforts have been done by the researchers among various areas.
It’s worth noting that Xu et al given the dynamics model of
CAS in [3] which described CAS as a chaotic system:

ẋ1(t) = −bx1(t)− cx2(t),

ẋ2(t) = −(b+ 1)ωx1(t)− (c+ 1)ωx2(t) + ωx31(t)

+Ecosσt (1)

where x1(t), x2(t) are the inner diameter and pressure changes
of the coronary artery vessel, respectively. Ecosσt is used to
describe the periodic perturbation.

Many existing works are based on the aforementioned
model. In these researches, the treatment of MI are regarded
as designing an appropriate control strategy to make the
convulsionary vessel synchronize with a health one. In [4, 5],
backstepping approach and nonlinear state feedback method
are used to the CAS synchronization. Ref [6] utilizes sliding

Project supported by the National Natural Science Foundation of China
(Grant Nos.61503280,61403278,61471243.) and the Science and Technology
Commission of Tianjin Municipality (Grant No.15JCYBJC16100)

Zhanshan Zhao is with the School of Computer Science & Soft-
ware Engineering, Tianjin Polytechnic University, Tianjin, 300387. E-
mail:zhzhsh127@163.com

Haoliang Cui is with the School of Computer Science & Software Engi-
neering, Tianjin Polytechnic University, Tianjin, 300387

Jing Zhang is with the School of Textiles, Tianjin Polytechnic University,
Tianjin, 300387 and Tianjin Vocational Institute, Tianjin, 300410

Jie Sun is with the School of Computer Science & Software Engineering,
Tianjin Polytechnic University, Tianjin, 300387

mode control method to achieve synchronization of CAS under
the bounded uncertainties, takes full account of the presence of
disturbances in the actual coronary artery system. Furthermore,
the CAS synchronization in finite-time is achieved using high-
order sliding mode adaptive control method in [7], makes the
convulsionary vessel synchronize with a health one in finite-
time,to ensure the control effect in the actual coronary artery
system timeliness. Considering the time delay caused by med-
ication time and drug absorption, a chaotic synchronization
feedback controller with input time-varying delay is design to
guarantee the control performance of CAS in [8]. The above
articles are effective in considering the actual problems of
CAS.

However, the CAS has complicated nonlinear characteristic-
s. The nonlinear term in (1) will loss some information of the
system. In the past two decades, T-S fuzzy model exhibited
significant functions in approximating and describing complex
nonlinear systems [9–14]. In this paper, we give a fuzzy CAS
model which can retain much more information of nonlinear
characteristics. Therefore, the study on CAS base on T-S fuzzy
model compared to the previous research results is closer to
the actual CAS.

Nonlinear effect widely exist in the natural phenomenon.
The absorption and diffusion of drugs is also a nonlinear effect.
Therefore, the medical efficacy is regarded as a nonlinear
inputs in our paper.Compared to [6], our study is closer to
the actual CAS. Furthermore, the parameters uncertainties
are considered in drive-response systems so that the research
has stronger robustness. Recently, adaptive fuzzy feedback
control approach [15–18] is proven to be effective in nonlinear
system control. Previous studies on CAS relied on deter-
ministic mathematical models. However, the existing model
is the approximation of CAS, there is a certain error. For
this reason, we design a fuzzy adaptive controller, so that
in the case of nonlinear input signal, the coefficient matrix
exists for the modeling uncertainty, the response system and
the drive system to achieve synchronization. In recent years,
the researchers have proposed some new control strategies
based on adaptive control and fuzzy control for different
nonlinear systems, such as adaptive fuzzy control [19–21],
observer-based fuzzy adaptive output-feedback control [22],
adaptive tracking Control [23]. Sliding mode control [24] and
adaptive control are the general control theory of chaotic
synchronization, there are some methods to combine sliding
mode control, such as adaptive sliding mode control [25],
optimal guaranteed cost sliding mode control [26], adaptive
fuzzy hierarchical sliding mode control [27].However, as we
known, few researchers design control law based on fuzzy
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system which can better approach the real CAS with input
nonlinearity and parameter perturbations.

Motivated by above discussions, we investigate the adaptive
synchronization of CAS base on the T-S fuzzy model. An
effective adaptive control strategy is proposed to the H∞
synchronization of fuzzy CAS with the input nonlinear and
parameter perturbations. The effectiveness of this strategy can
be illustrated by the simulation in the following section.

A. Coronary artery fuzzy model

In this paper, we use uncertain T-S fuzzy model to describe
CAS as follows:
Plant rule k: IF φ1(t) is Mk1, φ2(t) is Mk2, · · · , φr(t) is Mkr,
THEN

ẋm(t) = (Ak + ∆Ak)xm(t) + (Bk + ∆Bk)p(xm(t), t)

+q(t)(k = 1, · · · , v)

ym(t) = Cxm(t) (2)

where φj(t)(j = 1 · · · r) is the premise variable. Mij(i =
1 · · · k, j = 1 · · · r) is the fuzzy set. r represents the number
of the fuzzy rule, xm(t), ym(t) ∈ Rn are the state vector and
output vector, respectively. p(xm(t), t) is the nonlinear term.
q(t) denotes a perturbation with certain period. Ak, Bk, C ∈
Rn∗n are constant real matrices. ∆Ak,∆Bk ∈ Rn∗n represent
the uncertainties of system which can be described as:

[∆Ak,∆Bk] = HF (t)[Eak, Ebk] (3)

where H,Eak, Ebk ∈ Rn are known constant matrices and
F (t) is an unknown matrix function satisfying: FT (t)F (t) ≤
I.

Using the singleton fuzzifier, product fuzzy inference and
weighted average defuzzifier,the dynamic fuzzy model in (2)
can be represented by:

ẋm(t) =
v∑
k=1

hk(φ(t)){(Ak + ∆Ak)xm(t) + (Bk + ∆Bk)

∗p(xm(t), t) + q(t)}
ym(t) = Cxm(t) (4)

where hk(φ(t)) =
∏r

j=1Mkj(φj(t))∑v
k=1

∏r
j=1Mkj(φj(t))

(k = 1, · · · , v)

is the normalized grade of membership and it satisfies:∑v
k=1 hk(φ(t)) = 1, hk(φ(t)) ≥ 0.

The fuzzy response system is given as follows:
Plant rule k: IF φ1(t) is Mk1, φ2(t) is Mk2, · · · , φr(t) is Mkr,
THEN

ẋs(t) = (Ak + ∆Ãk(t))xs(t) + (Bk + ∆B̃k(t))p(xs(t), t)

+q(t) + d(t) + EΩ(u(t))(k = 1, · · · , v)

ys(t) = Cxs(t) (5)

where xs(t), ys(t) ∈ Rn is the state vector and the output
vector, respectively. p(xs(t), t) is the nonlinear term. d(t) rep-
resents external disturbance. E ∈ Rn∗n is constant real matrix.
∆Ãk(t),∆B̃k(t) ∈ Rn∗n denote the adaptive estimated value
of ∆Ak,∆Bk. Similar to (4), we infer the fuzzy response

system (5) as:

ẋs(t) =
v∑
k=1

hk(φ(t)){(Ak+∆Ãk(t))xs(t)+(Bk+∆B̃k(t))

p(xs(t), t) + q(t) + d(t)}+ EΩ(u(t))

ys(t) = Cxs(t) (6)

Defining e(t) = xs(t)−xm(t) , the error system can be written
as:

ė(t) =
v∑
k=1

hk(φ(t)){∆Ukxs(t) + ∆Nkp(xs(t), t)}

+
v∑
k=1

hk(φ(t)){(Ak + ∆Ak)e(t) + (Bk + ∆Bk)

∗pe(t) + d(t)}+ EΩ(u(t)) (7)

where

∆Uk = ∆Ãk(t)−∆Ak = (akij)n×n (8)

∆Nk = ∆B̃k(t)−∆Bk = (bkij)n×n (9)
pe(t) = p(xs(t), t)− p(xm(t), t) (10)

The system (4) and (6) will be asymptotically synchronized
if the synchronization error e(t) satisfies lim

t→0
e(t) = 0. In this

paper, we design an adaptive output feedback controller as
follows:

u(t) = −γ(t)

2
Ce(t) (11)

where u(t) = [u1(t) . . . un(t)]T ∈ Rn is the control input
vector, Ω(u(t)) =

∑v
k=1 hk(φ(t))[ω1(u1(t)) . . . ωn(un(t))]T

represents the nonlinear control input vector which satisfies
the following inequality:

ui(t)ωi(ui(t)) ≥ νi(ui(t))2 (1 ≤ i ≤ m) (12)
ν∗ = minνi (13)

ωi is function, γ(t) is an adaptive parameter and adjusted by
the following adaptive law:

γ̇(t) = ν∗δ‖Ce(t)‖2, γ(0) > 0. (14)

where δ and ν are positive parameters. By applying of the
above adaptive controller, synchronization error e(t) will con-
verge to zero asymptotically. To obtain the synchronization
conditions, the following lemma and assumptions will be used
during the proof.
Lemma 1[28] For a symmetric matrix Z and appropriately
dimensional matrices D, G and F (t) satisfying FT (t)F (t) <
I . Inequality Z + He{DF (t)G} < 0 is true, if and only if
the following inequality Z+ εDDT + ε−1GGT < 0 holds for
any ε > 0.
Assumption 1 The nonlinear function p(x(t); t) satisfies the
Lipschitz condition:

|p(xm(t), t)− p(xs(t), t)| ≤ |L(xm(t)− xs(t))| (15)

where L is the Lipschitz constant matrix.
Assumption 2 Matrix P > 0 and satisfies the following
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