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a b s t r a c t 

Punishment, as a remarkable way, has been proposed to explain the emergence and persistence of co- 

operation in the human species. Inspired by the fact that people have a certain tolerance for free-riders 

before punishment, therefore, we study the effect of tolerance-based punishment on the evolution of 

cooperation in spatial public goods game. Cooperators punish defectors on the basis of the tolerance 

threshold during the evolutionary process and have to bear the relevant costs of sanction subsequently. 

Different from previous works, the new mechanism can reduce the frequency of punishing by control- 

ling the tolerance for punishment. We find that this mechanism can lead to synergistic effects, and it 

can stabilize the circumstance of full cooperation under adverse conditions. By means of analysis of the 

emergence of cooperative clusters, we demonstrate that the tolerance-based punishment can promote 

cooperation through enhancing spatial reciprocity. In addition, the readiness of cooperation increases ob- 

viously by adjusting this kind of punishment. Our work extends the form of punishment in the evolution 

of spatial public goods game and the results are conducive to a better understanding of punishment. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although competition and natural selection among species 

drive their evolution and theoretically bring more benefits to de- 

fectors, the emergence and maintenance of cooperation among 

unrelated individuals are still abundant, ranging from biological 

spheres to microorganism groups and complex social systems in 

the real world [1–4] . Consequently, many scientific researchers 

from myriad fields pay attention to these cooperative phenom- 

ena and try to understand them. They usually resort to the most 

prevailing framework of evolutionary game theory within popu- 

lation dynamics to uncover the intrinsic mystery of cooperation 

[5,6] . Up to now, there is no doubt that the prisoner’s dilemma 

game [7–9] is the most popular model to explore the potential 

supporting mechanism for cooperation of pairwise interactions un- 

der this framework. However, the N-person prisoner’s dilemma 

game, namely, the so called public goods game (PGG) [10,11] , is the 

metaphor to study the evolution of cooperative behavior for multi- 

individual interactions. Clearly, dealing with the environmental is- 

sues (overgrazing and overfishing) or politics and so forth, the PGG 

is more reasonable to observe and explain the sustainability of co- 

operation [12] . 
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In a traditional PGG, all agents decide whether to cooperate or 

not simultaneously. It is used to assume that a cooperator ( s i = C) 

contributes a fixed cost ( c = 1 ) to the public pool and a defec- 

tor ( s i = D ) pays nothing. Afterwards, the sum of contributions in 

the public pool multiplies the synergy factor r (1 < r < N, N is the 

size of the group). The resulting product is then allocated among 

whole participators within the system equally, irrespective of what 

strategy they have selected. Defectors are able to obtain the same 

payoff with cooperators without efforts and dominate the whole 

group ultimately. Apparently, defection is the rational Nash equi- 

librium for this game. No one would prefer to invest in common 

pool if the above description happens. That is to say, although all 

individuals’ cooperation can maximize whole payoff, defection is 

always the optimal choice no matter what the others’ strategies 

are in this model, which is the well known social dilemma [13] . 

Over the past decades, it has been proved that defection can be 

effectively suppressed in this social dilemma with the help of a va- 

riety of factors and mechanisms, i.e. reward [14,15] , reputation [16] , 

heterogeneous activity [17,18] , social diversity [19–21] , structured 

populations [22] , punishment [23,24] , win-stay lose-shift [25] , and 

so on [26–30] . Among them, spatial structure as a paradigm is one 

of the most conspicuous works and has been intensively studied 

[7] . In spatial game, individuals are fixed on the nodes of the lat- 

tice. Player i could interact with his neighbors only. In addition, in- 

spired by this prominent work, various topologies has been studied 

to illustrate how cooperation evolves [31–36] . 
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What triggers our interest is the punishment mechanism in 

PGG, which has been proved to be an effective method to facil- 

itate cooperation theoretically and experimentally [37–43] . More- 

over, punishment is frequently observed in animal society [44] . 

Usually, the punishers’ sanctions are considered to be costly. There- 

fore, punishers must bear the cost of punishment and those who 

are punished suffer a fine. Obviously, this approach will diminish 

the overall payoff of both sides. In addition, the implemented pat- 

terns of punishment rely on the evolutionary process, environment 

and individual strategies. As a consequence, the influence of pun- 

ishment could be revealed in completely different ways in struc- 

tured populations. Although punishment is costly and punishers 

do not get any benefit in PGG experiment, it has been confirmed 

that cooperation will flourish if altruistic punishment is possible 

[45] . Recently, pool punishment is also emphasized as an effec- 

tive method for promoting the evolution of cooperation [46–48] . 

It is shown that punishment is dependent on emotion and toler- 

ance [49] . This illustrates that punishment may have a quantitative 

change for a period of time. In reality, it is impossible that cooper- 

ators prefer to punish selfish players permanently even if punish- 

ment is widespread. Most humans are inclined to cooperate visibly 

[50] . This is because the execution of punishment is pretty costly 

and abstinence is unavoidable [51] . Moreover, a tolerant strategy 

is introduced and the diversity of tolerance can enhance coopera- 

tion effectively [52] . Tolerance-based punishment combining with 

investment is also studied [53] . Motivated by these observations, 

here we drop the assumption that cooperators may punish defec- 

tors immediately. In contrast, we introduce a threshold for punish- 

ment, which means that punishment will be implemented after a 

tolerance stage. We wonder how cooperation fares when tolerance- 

based punishment is considered in the spatial public goods game. 

In other words, once defectors break the tolerance of cooperators, 

cooperators will punish the corresponding players. And coopera- 

tors have to bear the cost. 

The rest of this paper is organized as follows. Section 2 shows 

the basic model. And then, numerous simulation results are pre- 

sented in Section 3 to discuss the effect of tolerance-based pun- 

ishment in promoting cooperation. Section 4 concludes this paper. 

2. Methods 

In present work, the PGG is considered on a L × L regular lattice 

with periodic boundary conditions. The agents occupy the vertices 

of the lattice. Individual i takes part in G = 5 overlapping groups 

centered at i and its G − 1 neighbors, respectively. As a conse- 

quence, each player pertains to g = 1 , ..., G different small systems. 

Originally, every individual is arranged as a cooperator (s i = C = 1) 

or a defector (s i = D = 0) with the same probability. As mentioned 

earlier, cooperators must pay a same cost c = 1 to the public pool, 

but defectors pay nothing. Thereafter, the sum of contributions 

in the group multiplies the synergy factor r (1 < r < G ) and the 

amount will be distributed equally in the group, irrespective of 

whether they have invested or not. Therefore, the player i obtains 

payoff P 
g 
i 

from a group g expressed by the following mathematical 

formula 

P g 
i 

= 

⎧ ⎨ 

⎩ 

r·∑ 

j∈ g s j ·c 
k i +1 

− s i · c, if s i = C, 

r·∑ 

j∈ g s j ·c 
k i +1 

, if s i = D, 

(1) 

where j is one of the members in group g and k i is the degree of 

player i . Since each player participates in G = 5 PGGs, accordingly, 

the total payoff P i of player i is 

P i = 

G ∑ 

g=1 

P g 
i 
. (2) 

In addition, parameter t i is arranged to record the successive 

times of defection for player i and M i represents the tolerance 

threshold. Here we assume that M i is same for all agents. Hereafter 

it is represented only by M . Of particular reputation, t i is also per- 

mitted to change according to the following agreement. All players 

possess the same parameter t i = 0 to avoid preferential influence 

before the game. However, t i will plus 1 if player i chooses defec- 

tion. Otherwise, it is always zero. That is to say, t i will jump to 

zero once player i changes from defection to cooperation. Defector 

i will be punished with a fine α in the group if t i > M , and all co- 

operators who participate in the punishing share the correspond- 

ing costs equally at the same time. Once player i satisfies the above 

situation, he would calculate his payoff according to the following 

equation: 

P g 
i 

= 

⎧ ⎨ 

⎩ 

r·∑ 

j∈ g s j ·c 
k i +1 

− s i · c − n d ·α
n c 

, if s i = C and t i > M, 

r·∑ 

i ∈ g s j ·c 
k i +1 

− α, if s i = D and t i > M. 

(3) 

Here n c is the number of cooperators who carry out the punish- 

ment simultaneously in the group centered at player i , and n d is 

the number of defectors who are beyond the limit of the partners’ 

tolerance M . What needs to be emphasized is that cooperators who 

decide to punish bear the same cost. In two extreme cases, it is 

worth pointing out that Eq. (3) tends to Eq. (1) when M tends to 

infinity. On the contrary, M → 0 indicates that the punishment will 

work immediately like previous works. Undoubtedly, such a pun- 

ishment will certainly lead to a heterogeneous state of players. Be- 

sides, Anna et al.find that those people who get the highest pay- 

off tend not to adopt costly punishment [54] . This shows that this 

mechanism has realistic bases. 

Obviously, it can distinguish free-riders from the whole system 

by means of this simple mechanism. Compared with the traditional 

case, individuals will punish free-riders according to the tolerance 

boundary in the new model. This would lead to heterogeneity of 

payoff, which is the main characteristic of current models. For ex- 

ample, defectors have to suffer a lose in either reputation or prop- 

erty if they are always exploiting others in reality. The random 

initial strategy distribution is the start of Monte Carlo (MC) sim- 

ulations. Subsequently, it transfers to the strategy updating stage. 

Player i will adopt the strategy of player j who was chosen ran- 

domly according to the probability H : 

H = 

1 

1 + exp [(P i − P j ) /K] 
, (4) 

where K represents the selection intensity [55–58] . It is noted that 

each player has a chance to adopt one of his neighbors’ strategies 

once on average during one full MC simulation. 

Results of MC simulations in the RESULTS section are carried out 

on population comprising 200 × 200 to 400 × 400 individuals. We 

study the key quantity of cooperator density ρc in the equilibrium 

state. The important quantity fraction of cooperators of each data 

point is computed by averaging the last 10,0 0 0 steps of the total 

1 × 10 5 MC steps. In addition, the final results are averaged over 

10 independent runs to guarantee the accuracy and overcome the 

initial distribution. 

3. Results 

First of all, to provide a comprehensive view, we show the co- 

operators’ evolutionary fate with respect to the combined points 

of parameter α and M in Fig. 1 . It is remarkable that r = 3 . 7 is a 

relatively low value of the enhancement factor in the spatial PGG. 

However, the monotonic dependence can still be seen in such a 

situation. Obviously, the lower right corner ( ρc = 1 ) and the upper 

left corner ( ρc = 0 ) are the pure strategy states, and the central 
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