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A B S T R A C T

Real time simulations of welding processes remain intractable despite the impressive increasing computing
power. This paper presents the case of a thermo-elasto-plastic problem with located moving heat loading. A
novel non-intrusive a posteriori reduced order strategy for building multiparametric computational vademecum
dedicated to real-time simulations of nonlinear thermo-mechanical problems is proposed. The high order proper
generalized decomposition (HOPGD) is used to seek separated representation of solutions with some precom-
puted snapshots. Furthermore, a relaxation method is successfully applied to accelerate this procedure. The
accuracy of the constructed computational vademecum is controlled by a localized multigrid selection method
that allows an automatic selection of snapshots in the areas of interest of the parameter space. Examples of
multiparametric computational vademecum taking into account some material parameters will be shown in this
paper.

1. Introduction

In spite of the impressive progresses in computer science, tradi-
tional approaches reach some limitations when dealing with nonlinear
parametric problems, like in inverse identification or optimization of
the welding or additive manufacturing processes. A very large number
of solutions of the concerned model has to be computed for different
values of the problem parameters. In addition, when real-time simula-
tions are required, it remains intractable with traditional computational
approaches, due to the increasing degrees of freedom and complexity
of the models.

In this context, model order reduction (MOR) techniques [1] have
been developed recently. The resulting computational vademecum [2]
(called also virtual charts [3,4] or meta-model computations), actually a
series of parametric solutions, allows real-time simulations of paramet-
ric problems and open numerous possibilities in integrated simulation-
based engineering. The construction of computational vademecum con-
sists in usually two stages: offline and online. With the MOR techniques,
the parametric solutions are computed and stored as a series of vectors
(reduced bases) at offline stage once for all for building the computa-
tional vademecum. Then the computational vademecum, served as a sort
of numerical or graphical handbook, can provide a real-time response
for any value of parameters at the online phase. Depending on the way
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the reduced bases (RBs) are built with, two families of MOR approaches
can be distinguished: a posteriori and a priori.

A posteriori approaches consist, usually, in employing the proper
orthogonal decomposition (POD) method [5] to extract the most sig-
nificant characteristic of the solution as RB that can be then applied
to models with slight changes to the original one. Thus this kind of
approaches needs some priori computed solutions and the resulting
reduced order models can be usually solved efficiently. The POD-based
MOR has been successfully applied in the context of solid mechanics
(see e.g. Refs. [6–13]). The main issue of such approaches is the loss
of efficiency when dealing with nonlinear problems with high para-
metric dependency. Several approaches, e.g. the Empirical Interpola-
tion Method (and its discrete counterpart DEIM) [14,15], the hyper-
reduction methods [9,16,17] and the asymptotic numerical method
[5,18,19] that allows eliminating the re-computation of the tangent
matrix, are introduced to accelerate the computations, but real time
requirements remain intractable.

The other family of approaches, i.e. a priori, is based on the proper
generalized decomposition (PGD) [20–22]. The main advantage of
these approaches lies in the separated representations of solutions,
which is firstly introduced under the name of “radial approximation”
[23] by Pierre Ladeveze in the 80s within the framework of the LArge
Time INcrements (LATIN) method [24,25], for solving high nonlin-
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Fig. 1. Number of iterations during the construction of 3D PGD approximations.

Table 1
CPU time for 3D HOPGD.

Number of modes Iterations CPU time

HOPGD 60 2832 400 s
HOPGD + Relaxation 62 1284 240 s

Table 2
CPU time of 5D HOPGD.

Number of modes Iterations CPU time

HOPGD 91 4528 915 s
HOPGD + Relaxation 97 2641 563 s

ear problems. These PGD-based methods do not require any previ-
ous solution and the RBs are built on-the-fly by solving the resulting
multi-dimensional models in which model parameters (boundary con-
ditions, initial conditions, geometrical parameters, material and pro-
cess parameters …) are considered as extra-coordinates. Many problems
are solved using the PGD approaches; interested readers are referred
to [20,21,26–29] and the references therein. A series of computational
vademecum are constructed for different problems in sciences and engi-
neering such as thermal control of industrial furnaces [30], shape opti-
mization [2,4], computational surgery [31–33], etc. The use of compu-
tational vademecum can provide real-time responses at the online phase,
since the multidimensional models have been solved offline for every
possible value of parameters. This opens various possibilities and devel-
opment in integrated simulation-based engineering. However, such
approaches are usually intrusive. In particular, one can cite a recent
paper [42] successfully using the PGD-based approach for the thermal
process of welding, however, the application for nonlinear mechanical
problems involving material plasticity is still under development.

For the sake of avoiding the intrusive aspect, recently, a POD-based
computational vademecum [34] has been built through an a posteriori
approach for welding processes. In this work, snapshots are computed
with the standard finite element (FE) method. A manifold-based method
[17,34,35] is proposed to interpolate both the space and time POD-
RBs with respect to the variation of parameters. Thus there is no com-
plex computation at the online phase (no equilibrium equations have
to be solved) and real-time space-time responses can be obtained. This
strategy of construction of computational vademecum without intrusive
effects has been applied to standard welding simulations. The real-time
computational vademecum can be helpful for engineers to make opti-
mization decisions of welding processes.

In the same context, this paper presents an alternative a posteriori
non-intrusive tool to build the multiparametric real time space-time

computational vademecum using the high order PGD (HOPGD) method
[36]. Similarly to PGD methods, the problem parameters are consid-
ered as extra-coordinates of solutions. Then a separated representation
of solutions is constructed by HOPGD. However, the RB functions are
computed offline, through an a posteriori approach, with some precom-
puted snapshots. The greedy algorithm incorporated with an alternative
fixed point strategy is used for the search of the basis functions. In order
to increase the convergence rate, the dynamic relaxation method (i.e.
Aitken’s Delta Squared method [37–39]) is proposed to accelerate the
greedy algorithm. Its efficiency will be shown with several examples in
this paper. Once the basis functions are constructed offline, solutions for
new values of parameters can be provided online by the computational
vademecum at real-time rates.

In order to control the accuracy of computational vademecum, a local
refinement methodology [34] is applied to select the necessary snap-
shots in the parameter space for a given error. Exhaustive generations
of snapshots, at expensive computational cost, can be then avoided.

Starting with the problem statement, this paper introduces the
weakly coupled thermo-mechanical formulation in section 2. A new
strategy with HOPGD method for building multiparametric computa-
tional vademecum is presented in section 3. The convergence accelerator
of HOPGD will also be presented. Section 4 presents some application
examples of the proposed approach. Finally, computational vademecum
dedicated to parametric studies of welding processes will be shown at
the end with a sensitivity analysis.

Notation: In this paper, the studied quantities of interest depend on
the space-time coordinates (𝐗, t) ∈ Ω × [0,T]⊂ ℝ4 and a set of parame-
ters 𝜇 ∈  ⊂ ℝd. The associated physical problem is then said to be a
(4 + d)D problem, in order to describe its dimension.

2. Problem statement

2.1. Strong formulation

Let us consider a transient thermo-elasto-plastic problem. Under
weak coupling assumption, the transient heat transfer analysis can be
carried out prior to the mechanical analysis, by solving the following
governing equation

𝜌C d𝜃(𝐗, t)
dt

+ div 𝐪(𝐗, t) = r(𝐗, t) in the matrial domain Ω (1)

where “div •” is the divergence operator with respect to the initial posi-
tion X, d•/dt the material time derivative, 𝜌 and C are respectively the
material density and specific heat capacity, and r is the internal heat
generation.

The linear isotropic Fourier constitutive law is enforced here

𝐪(𝐗, t) = −𝐤.∇𝜃(𝐗, t) (2)

where 𝐤 is the thermal conductivity.
Different boundary conditions (BCs) and initial conditions can be

defined

⎧⎪⎨⎪⎩
𝐪(𝐗, t).𝐧(𝐗, t) = 𝐪(𝐗, t) on the surface 𝜕Ω𝐪

𝜃(𝐗, t) = 𝜃(𝐗, t) on the surface 𝜕Ω𝜃

𝜃(𝐗, t = 0) = 0

(3)

Considering a reference frame Ω̃ moving at constant velocity 𝐯, the
original problem reads

𝜌C 𝜕𝜃(𝐱, t)
𝜕t

+ 𝐝𝐢𝐯 𝐪(𝐱, t) + 𝜌C𝐯.∇𝜃(𝐱, t) = r(𝐱, t) 𝐢𝐧 Ω̃ (4)

or with the steady-state assumption, as proposed in Ref. [17]

div 𝐪(𝐱, t) + 𝜌C𝐯.∇𝜃(𝐱, t) = r(𝐱, t) in Ω̃ with 𝜕𝜃(𝐱, t)
𝜕t

= 0 (5)

where 𝐱 is the current position vector of a material point defined by 𝐗 at
initial time in Ω̃. At each time t, 𝐱 = 𝐗 + 𝐯t. Note that the steady-state
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