Sedation effects of intranasal dexmedetomidine delivered as sprays versus drops on pediatric response to venous cannulation

Zhubin Xie, RN 1, Weihua Shen, MD 1, Jingyi Lin, RN, Liwen Xiao, RN, Minyan Liao, RN, Xiaoliang Gan, MD, PhD *
Department of Anesthesiology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China

1. Introduction

There are millions of children undergo surgery each year in the world, of those children, >50% experience significant fear and anxiety during preoperative period [1]. Intravenous cannulation, separation from parents, as well as anesthesia induction by inhaling sevoflurane via mask are the main causes to pediatric fear and preoperative anxiety [4], but it may increase the risk of aspiration during the period of anesthesia, and the sedatives with bad taste may be spitted out of the mouth by uncooperative children. Because a rich blood supply exists in the nasal mucosa, nasal routes to administrate sedatives has become practicable [5].

Dexmedetomidine has sedative and mild analgesia properties [6], it has been safely administrated in pediatric sedation [7], further, the use of dexmedetomidine can alleviate pain during third molar surgery [8]. Based on previous findings, we speculated that intranasal dexmedetomidine could be applied to attenuate pediatric responses to intravenous cannulation at the preoperative holding area.

Unfortunately, it has been reported that many children had been frightened by the mode of intranasal premedication [9], and the

© 2017 Elsevier Inc. All rights reserved.

Please cite this article as: Xie Z, et al, Sedation effects of intranasal dexmedetomidine delivered as sprays versus drops on pediatric response to venous cannulation, American Journal of Emergency Medicine (2017), http://dx.doi.org/10.1016/j.ajem.2017.03.021
bioavailability can be reduced when intranasal administration with a large quantity of sedatives which can swallow into mouth. Mucosal atomization device (MAD) has been demonstrated to deliver drugs well into the nasal cavity as sprays avoiding spillage and swallowing, which improved medication bioavailability as well as acceptance as compared with drops methods [10,11]. In contrast, another previous study found that the bioavailability of diazepam after intranasal drop was similar to atomized nasal administration in dogs [12]. The paradoxical findings suggest that the medication bioavailability may not only relate to methods of intranasal administration, but also be associated with the characterizations of delivered drugs.

The commercial concentration of dexmedetomidine is 100 μg/ml which makes it easy to administer as drops with a small volume. It remains largely unknown the advantages of intranasal administration with small quantity of dexmedetomidine by MAD. The present study aimed to compare the sedation effects of dexmedetomidine on pediatric responses to intravenous cannulation between intranasal sprays and drops by MAD or syringe.

2. Methods

This study was approved by the institutional review board of the Zhongshan Ophthalmic Center (Reference number: 2015MEKY009). Informed written consent was obtained from at least one parent/guardian of each participating child, and the tenets of the Declaration of Helsinki were followed throughout this study.

2.1. Pediatric patients

Patients undergoing elective ophthalmic surgery were recruited from Zhongshan Ophthalmic Center between July 2015 and January 2016, and 106 children of American Society of Anesthesiologists (ASA) physical status 1–2 aged between 2 and 5 years were enrolled. In this current study, children with gastro-esophageal reflux, nausea and vomiting, apnea in the past three months, recent pneumonia, exacerbation of asthma, bronchitis and upper respiratory tract infection, severe arrhythmias, heart failure and cardiac structural abnormalities, facial abnormalities, severe neurological disease, moyamoya disease, allergy to dexmedetomidine, those on digoxin and beta blockers, and cardiac disease with bradycardia were excluded.

2.2. Randomization grouping

Prior to the trial, randomized treatment allocations with no further stratification were generated by an independent person using a computer random number generator with a 1:1 allocation. The patients were randomly divided into two groups (Mucosal atomization device group and Syringe device group), which received 2 μg/kg intranasal dexmedetomidine delivered as sprays or drops by Mucosal atomization device (MAD, Wolfe Tory Medical, Inc., US) or syringe device, respectively. (A flowchart of participants can be seen in Fig. 1.)

2.3. Protocols of sedation

At the preoperative holding area, the patients were accompanied with the parents/guardians and assessed for the level of anxiety using modified Yale Preoperative Anxiety Scale [13], and undiluted preservative-free dexmedetomidine (Ai Bei Ning; Jiang Su Heng Rui Medicine Co. Ltd., Jiangsu Province, China) was prepared at commercial concentration of 100 μg/ml and drawn up into a 1-ml tuberculin syringe or mucosal atomization device (Fig. 2), thus, the final volume in each group was 0.02 ml/kg. A masked research assistant dropped or sprayed half of the volume of the solution into each nostril, and the patient was encouraged to remain in the lying supine position for at least 2 min to facilitate dexmedetomidine absorption. After intranasal administration, the sedation status was evaluated by sedation scores [14]. 30 min after intranasal administration, intravenous cannulation was carried out by the same nurse (Liwen Xiao) whom has experiences over 300 times of insertion for pediatrics, and the response for needle insertion was assessed by the Faces, Legs, Activity, Cry and Consolability (FLACC) scale. Vital signs, including the pulse oximetry and heart rate, were monitored every 10 min after intranasal drug administration and continuously measured after the patient fall asleep until transferred to operating room for anesthesia induction.

Fig. 1. Flow chart of the study. CONSORT diagram showing the flow of participants throughout each stage of the randomized trial. Patients in MAD group were intranasally received 2 μg/kg dexmedetomidine delivered as sprays via mucosal atomization device (MAD), and patients in syringe group were intranasally received 2 μg/kg dexmedetomidine delivered as drops via syringe.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات