Evaluation of environmental impacts of citric acid and glycerol outdoor softwood treatment: case-study.

Essoua Essoua Gatien Gerauda, Beauregard Roberta, Ben Amorb, Blanchet Pierrea, Landry Veronicc

Contact information: a:Chaire Industrielle de Recherche sur la Construction Ecoresponsable en Bois (CIRCERB), Pavillon Gene-H-Kruger, Université Laval 2425, rue de la terrasse Québec (Québec) G1V0A6 ; b: Department of Civil Engineering, Université de Sherbrooke, 2500, boul. de l’université, Sherbrooke, QC, J1K 2R1, Canada; c: FPInnovations, 319 rue Franquet, Québec, QC, G1P 4R4, Canada. * Corresponding author: Pierre.Blanchet@sbf.ulaval.ca

Keywords: Life cycle assessment; Outdoor wood siding; Biobased wood treatment; Residential building

Abstract

Over the last few decades, wood modification has been performed to improve wood product technical performance. Using renewable based chemicals for wood modification is an innovative alternative to the non-renewable petrochemicals commonly used. However, it should be kept in mind that having the raw material from renewable sources does not guarantee zero environmental impacts. In this study, the treatment considered uses citric acid and glycerol mixture; two chemical products derived from renewable sources. In the residential building context of Quebec-Canada, the cradle-to-grave life cycle assessment for untreated and treated lodgepole pine wood siding was performed and compared. The results obtained show that the treated wood siding has higher environmental impacts than the untreated wood siding, in spite of its longer service life. This is partially caused by the high contribution of citric acid production used for treatment. The current service life expectancy of treated wood siding was estimated to be 2.8 times longer than the one of untreated wood siding based on standardized durability test and classification (AWPA E 10-12 and ASTM D 2017-05). Sensitivity analysis showed that life cycle impacts of treated wood siding become lower than those from untreated wood siding when service life expectancy reaches 5-times that of untreated wood siding. Life cycle assessment could be used for guidance in developing better treatments to improve their environmental impacts.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات