
Socialized policy administration

Zeqing Guo a, Weili Han a,*, Liangxing Liu a, Wenyuan Xu b,
Minyue Ni a, Yunlei Zhao a, Xiaoyang Sean Wang a

a Software School, and Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
b Department of Electronic Engineering, Zhejiang University, Zhejiang Sheng, China

A R T I C L E I N F O

Article history:

Received 4 August 2016

Received in revised form 26 January

2017

Accepted 6 March 2017

Available online 14 March 2017

A B S T R A C T

With the rapid development of mobile applications and online social networks, users often

encounter a frustrating challenge to set privacy and security policies (i.e., permission re-

quests) of various applications correctly. For instance, in an Android system, it is hard for

users, even programmers, to identify malicious permission requests (policies) when they

install a third-party application. To simplify the task of policy management, in this paper,

we propose a novel policy administration method where the policy settings from users’ friends

will be used as a key recommendation to guide policy administration, and the security of

friends’ privacy will be protected. We propose to let a user invite his or her friends to help

with policy setting in applications, and we call such a method socialized policy adminis-

tration (SPA for short). We designed two types of SPA: basic SPA and composite SPA. Both

types of SPA are equipped with a privacy preserving mechanism that enables users’ friends

to help users without leaking the friends’ preferences. In our prototype based on Tele-

gram, i.e., one of the most popular instant messaging applications, we utilize partially

homomorphic encryption cryptosystems to implement our framework. Based on the per-

formance evaluation, SPA is able to configure almost all types of policies of current popular

Android applications with a modest performance overhead.

© 2017 Elsevier Ltd. All rights reserved.

Keywords:

Policy based management

Socialized policy administration

Mobile applications

Social computing

Android

1. Introduction

The rapid development of mobile applications and social
network services raises the demand of user-friendly methods
for policy administration, because these applications and ser-
vices require their users to set various confusing yet obscured
policies (i.e., approve or reject permission requests of appli-
cations). Unfortunately, users and even applications’ developers
(Fang et al., 2016) are usually unskilled at managing the

applications (Enck et al., 2009; Barrera et al., 2010; Felt et al.,
2011; Zhang et al., 2014; Fang et al., 2014). The common prac-
tice is that the people who are not good at security management
might invite their friends and family members who are pro-
fessional to help to set their applications. For example, one could
invite his friends who major in Computer Science to install ap-
plications; an elder could ask his or her grandson to configure
a smart phone. During these help session, it is common for
the friends to show their configurations. Given that Social
Network Services (SNSs for short) mimic relationships between

This paper is the extension version of “Z. Guo, W. Han, L. Liu, et al. SPA: Inviting Your Friends to Help Set Android Apps, In Proceed-
ings of the 20th ACM Symposium on Access Control Models and Technologies (SACMAT 2015), June 1–3, 2015, Vienna, Austria: 221–231.

The paper is supported by NSFC (Grant No. 61572136, 61370080), the Shanghai Innovation Action Project (Grant No. 16DZ1100200),
and the National Program on Key Basic Research (Grant No. 2015CB358800).

* Corresponding author.
E-mail address: wlhan@fudan.edu.cn (W. Han).

http://dx.doi.org/10.1016/j.cose.2017.03.005
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 6 7 (2 0 1 7) 2 3 2 – 2 4 3

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:wlhan@fudan.edu.cn
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.03.005&domain=pdf

humans in reality, we extend this common practice to the cy-
berspace. In particular, a user may ask his or her friends to help
with setting his applications via Social Network Services. This
extension may appear to be simple and intuitive. However, such
a method would not be acceptable if the privacy of a user’s
friends cannot be preserved, especially when a user consults
them about sensitive settings, because if such a method cannot
prevent personal information leakage, it can be used to gather
friends’ private information.

Existing methods of collaborative policy authoring (Wishart
et al., 2010) or administration mechanisms (Han et al., 2014)
do not protect friends’ privacy. The prior work (Wishart et al.,
2010) did aim to protect content privacy, e.g., how to protect
the content of a user’s posts while sharing among friends on
an SNS, such as Facebook. However, prior work did not con-
sider the contextual privacy introduced as friends interact with
each other. In addition, CPA (Collaborative Policy Administra-
tion) (Han et al., 2014) utilizes settings of similar applications
from friends to set a user’s application without considering the
privacy protection.To fill in the gap, we aim at designing a user-
friendly policy administration method that does not leak user
privacy.

This paper, therefore, presents socialized policy administra-
tion, whereby users ask their friends to help with privacy settings
via SNSs without breaching friends’ privacy. Our approach
allows users with little knowledge of policy administration to
set their privacy settings automatically. The main contribu-
tions of this paper are as follows:

• We design socialized policy administration (SPA for short)
where a user can request his or her friends to help with
setting up sensitive policies. We design two types of SPA:
Basic SPA that treats each friend equally and Composite SPA
that allows users to add weights to friends.

• We propose a privacy preserving method leveraging par-
tially homomorphic encryption algorithms, which enable
order comparison between two ciphertexts without de-
cryption. In particular, comparison between ciphertexts
supports majority/minority high level policies, and achieves
a better performance of the merging algorithm for setting
types (e.g., Switch, Single Select, Multiple Select) than the one
using prior algorithms (Guo et al., 2015).

• We implement a prototype of Composite SPA on an Android
client of Telegram, which is a popular instant messaging (IM)
app with 100 millions monthly active users in February 2016
(TechCrunch, 2016). The composite SPA prototype allows
users to request friends’ settings and label a weight for each
friend according to their professional knowledge about policy
administration. Our evaluation of the prototype on Tele-
gram illustrates its validity. The source code of prototype
is uploaded on github1.

Note that, although the policies of applications and ser-
vices can be automatically set by SPA, users may view the
settings as decision supports, and adjust the policies on their

devices by themselves. As a result, professional users can also
obtain useful references from their friends.

The rest of this paper is organized as follows: Section 2 in-
troduces the background and describes the problem. Section
3 formally defines the SPA models. Section 4 describes the
design and implementation of SPA. We then present our ex-
perimental process and evaluation results in Section 5. Next,
we discuss the vulnerabilities of SPA and security of homo-
morphic encryption in Section 6. Section 7 introduces related
work. Finally, Section 8 summarizes this paper and outlines
our future work.

2. Background and motivation

2.1. Homomorphic encryption

Homomorphic encryption is a form of encryption that allows
a set of computations to be carried out on ciphertext and
generates an encrypted result which, when decrypted, matches
the result of operations performed on the plaintext (Wikipedia,
2016). That is, A may encrypt a message m and send the
ciphertext E(m) to B. B then take the ciphertext E(m) and
evaluate a function F on E(m) to obtain the encrypted result
E (F(m)). A decrypts the result, and obtain the expected
functionality on m. Meanwhile B learns nothing about the
data m.

Gentry showed the first fully homomorphic encryption
scheme using lattice-based cryptography in 2009 (Gentry, 2009a;
2009b). Such a scheme allows one to compute arbitrary func-
tions over encrypted data without the decryption key, i.e., given
encryptions E Em m1() (), ,… t , one can compute a composite
ciphertext that encrypts F m m1, ,… t() for any computable func-
tion F . Although the fully homomorphic encryption (FHE) which
supports an arbitrary function F on ciphertexts was pro-
posed several years ago (Wang et al., 2015; Brakerski and
Vaikuntanathan, 2011; Stehlé and Steinfeld, 2010; Van Dijk et al.,
2010), its performance is hard to meet the requirements for a
practical business service.

As a result, partially homomorphic cryptosystems are used
in practice because they are faster yet provide partial homo-
morphic properties. These popular partially homomorphic
cryptosystems include the following.

• Paillier (Additive): The Paillier cryptosystem, invented by
Pascal Paillier in 1999, is a probabilistic asymmetric algo-
rithm for public key cryptography (Paillier, 1999). The
cryptographic algorithm generates a key pair, consisting of
a public key and a private key. The public key is used to
encrypt plaintext; whereas the private key is used to decrypt
ciphertext.

The scheme is an additive homomorphic cryptosystem
(Damgård and Jurik, 2001), which has the following property.

F E E Em m m m1 2 1 2() ()() = +(),

Here, E refers to encryption function, and F is a function
defined by the partially homomorphic cryptosystem that cal-

1 SPA prototype is accessible on https://github.com/
SocializedPolicyAdministration.

233c om pu t e r s & s e cu r i t y 6 7 (2 0 1 7) 2 3 2 – 2 4 3

https://github.com/SocializedPolicyAdministration
https://github.com/SocializedPolicyAdministration

https://isiarticles.com/article/127919

