Evaluating quality of life in epilepsy: The role of screening for adverse drug effects, depression, and anxiety

Jean-Arthur Micoulaud-Franchi a, b, Fabrice Bartolomei c, d, Roderick Duncan e, Aileen McGonigal c, d, *

a Service d’explorations fonctionnelles du système nerveux, Clinique du sommeil, CHU de Bordeaux, Place Amélie Raba-Léon, 33076 Bordeaux, France
b Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
c Department of Clinical Neurophysiology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
d USR CNRS 3413 SANPSY, CHU Pellegrin, Université de Bordeaux, France
e Department of Neurology, University of Otago, Christchurch, New Zealand

A R T I C L E I N F O

Article history:
Received 10 June 2017
Revised 10 July 2017
Accepted 10 July 2017
Available online xxxx

Keywords:
Quality of life
Depression
NDDI-E
Anxiety
GAD-7
AEP

A B S T R A C T

Objective: The objective of this study was to evaluate the contribution of validated screening tools for antiepileptic drug (AED) adverse effects, depression, and anxiety to measure the quality of life (QoL) in people with epilepsy (PWE).

Methods: Patients in a tertiary epilepsy service were screened for quality of life (using QOLIE-31), major depressive disorder (MDD) (NDDI-E), generalized anxiety disorder (GAD) (GAD-7), and AED effects (AEP). Mini International Neuropsychiatric Interview (MINI) generalized anxiety disorder module was also performed. For AEP validation in French, the internal structural validity was analyzed. Dimensional (NDDI-E and GAD-7 scores) and categorical (MDD and GAD) analyses were performed to investigate interactions between QoL and AEP.

Results: A total of 132 (87 females) subjects were included. The French version of the AEP demonstrated satisfactory psychometric properties (Cronbach’s α = 0.87). Correlations between NDDI-E, GAD-7, AEP, and QOLIE-31 scores were high, and significant for all subscales of QOLIE-31; no effect of seizure-related variables was seen. Some sex differences in QOLIE-31 subscales were found, and mean AEP score was higher in females. Age, sex, NDDI-E, GAD-7, and AEP scores accounted for 61% of variance in QOLIE-31 scores. Differential effects were seen on QOLIE-31 subscales: AEP strongly correlated with all subscales; GAD-7 scores more strongly correlated with “Seizure Worry”; NDDI-E with “Energy-Fatigue”; and both NDDI-E and GAD-7 scores strongly correlated with “Emotional Well-Being”. Categorical analysis of groups with MDD alone, GAD alone, MDD + GAD, and neither MDD nor GAD showed significant differences in AEP and QOLIE-31 scores, with MDD + GAD showing the most AED effects and the poorest QoL.

Significance: The combination of screening tools for depression (NDDI-E), anxiety (GAD-7), and AED effects (AEP) has a strong power for evaluating QoL in PWE. Coexisting MMD and GAD were associated with the poorest quality of life and the highest AEP scores.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is increasingly recognized that optimal epilepsy care is based on managing “more than seizures”, by taking into account consequences and comorbidities of epilepsy at the individual level [1]. Health-related quality of life (QoL) in people with epilepsy (PWE) is known to be influenced by many variables including seizure freedom, comorbid psychiatric problems, and burden of antiepileptic drug (AED) adverse effects, as well as cognitive function, psychosocial factors, and perceived stigma [1–3]. A recent large study of pharmacoresistant epilepsy showed AED adverse effects and depression symptoms to account for most of the variance of the QOLIE-31 score, whereas epilepsy-related variables such as seizure frequency and epilepsy type had no effect [4]. These results accorded with Gilliam’s landmark study that launched the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E) [5], a reliable and accurate short self-reported questionnaire that has since been promoted as a multilingual screening tool for major depressive disorder (MDD) in PWE [6].

Given the high prevalence of AED adverse effects and their known impact on QoL, assessment of perceived AED side effects is important [7], but routine screening appears to be rare in practice [1]. Specific screening instruments allow more effective assessment of symptoms than an unstructured interview, and provide a means of quantifying these [8]. The Adverse Events Profile (AEP) is a reliable and accurate self-reported questionnaire that was developed over 20 years ago to evaluate the most common negative AED adverse effects reported by
patients taking AED [9], whose routine use in the epilepsy clinical setting has been advocated [8], and which has now been validated in Spanish [10], Chinese [11], Portuguese [12], Korean [13], and Bulgarian [14] language versions.

Apart from AED effects, depression has emerged as the other main determinant of QoL in epilepsy [4,5]. However, anxiety is increasingly recognized to be highly prevalent and disabling, with a significant, independent effect on QoL that appears to be at least as great as that of depression [15–18]. Indeed, anxiety disorders have recently been highlighted as an important and relatively “neglected” comorbidity in epilepsy [19]. In order to promote screening for generalized anxiety disorder (GAD), the most frequent anxiety disorder in PWE, the Neuropsychiatry Commission of the International League Against Epilepsy (ILAE) has encouraged multilanguage validation of the GAD-7 questionnaire, a reliable and accurate short self-reported questionnaire to diagnose GAD in epilepsy [20]. While MDD and GAD are often related, and may have some overlapping symptoms as well as overlap with AED effects [19], the GAD-7 and NDDI-E questionnaires have been shown to provide different information and are thus, well-suited as complementary instruments for rapid screening in the clinical setting [20]. The coexistence of anxiety and depressive disorders in epilepsy appears particularly detrimental [16], being associated with higher rates of suicidal ideation [21] and poorer QoL [16], although information on prevalence of this group is still quite scarce [19]. Individually, anxiety and depressive disorders are each associated with increased reported adverse effects of AED [22]. The interactions between AED effects, anxiety, and depression and their effect on the QoL in PWE are recognized to be complex [22,23] with, in addition, some evidence of sex differences in clinical expression [24]. However, very few previous studies have simultaneously examined all of these variables. In addition, existing studies show quite heterogeneous methodology, with most using screening instruments that evaluate depressive ± anxiety symptoms (using validated scales such as the Beck Depression Inventory (BDI) or the Hospital Anxiety and Depression Scale), and a smaller number identifying the presence or absence of a specific diagnostic condition (MDD or GAD as comorbid psychiatric disorder associated with epilepsy) using criterion-based structured interview such as the MINI (see Table 1). It should be borne in mind that screening instruments, while often providing valuable data, should not be used and interpreted as psychiatric diagnoses [32].

In order to evaluate interactions between QoL, depression, anxiety, and AED adverse effects in a population of people with epilepsy (PWE), we used validated standard screening tools (NDDI-E, GAD-7, AEP, and QOLIE-31). Dimensional (depressive and anxiety symptoms) and categorical (MDD and GAD) analyses were performed to investigate interactions between QoL and AEP. No French version of the AEP was available, so we also assessed the validity and reliability of a translated version.

2. Methods

2.1. Participants

People with epilepsy (PWE) were recruited from the Clinical Neurophysiology Department of the Timone University Hospital, Marseille and the Hôpital Henri Gaastaut, Marseille (these 2 centers forming part

Table 1

Summary of literature: articles 2000–2017 measuring QoL in adult PWE using a validated tool (QOLIE-89 or QOLIE-31), associated with at least one validated measure of depression and/or anxiety, as well as the AEP.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Journal</th>
<th>Population</th>
<th>Instruments</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. [25]</td>
<td>2016</td>
<td>Epilepsy & Behav</td>
<td>N = 260, single medical center Taiwan</td>
<td>QOLIE-31, HADS, AEP</td>
<td>Anxiety symptoms, depression symptoms and AED effects predicted QoL.</td>
</tr>
<tr>
<td>Park et al. [13]</td>
<td>2012</td>
<td>Korean Epilepsy Soc</td>
<td>N = 312 patients from S Korea</td>
<td>QOLIE-31, BDI, BAI, AEP</td>
<td>Korean validation study of AEP. AEP scores correlated with QOLIE-3, BDI, and BAI; anxiety scores strongest predictor of AEP.</td>
</tr>
<tr>
<td>Hecimovic et al. [26]</td>
<td>2012</td>
<td>Epilepsy & Behav</td>
<td>N = 193, tertiary center outpatients</td>
<td>QOLIE-89, BDI, AEP</td>
<td>This study focused on suicidal ideation. QOLIE-89, AEP, and BDI scores worse in group with suicidality features. Brazilian–Portuguese validation study of AEP. AEP highly correlated with QOLIE-31 and HADS. No difference symptomatic/generalized epilepsies.</td>
</tr>
<tr>
<td>Martins et al. [12]</td>
<td>2011</td>
<td>Epilepsy & Behav</td>
<td>N = 100, Brazilian tertiary center</td>
<td>QOLIE-31, HADS, AEP</td>
<td>Anxiety symptoms, depression symptoms and AED effects predicted QoL.</td>
</tr>
<tr>
<td>Luoni et al. [4]</td>
<td>2011</td>
<td>Epilepsia</td>
<td>N = 809 (multicenter Italian), all pharmacoresistant outpatients</td>
<td>QOLIE-31, BDI, AEP</td>
<td>BDI (depression symptoms) and AEP similar and main effect on QoL; no effect seizure frequency.</td>
</tr>
<tr>
<td>Yue et al. [24]</td>
<td>2011</td>
<td>Epilepsy & Behav</td>
<td>N = 247 from single Chinese neurology department</td>
<td>QOLIE-31, Hamilton Depression Rating Scale, Self-Rating Anxiety Scale, AEP</td>
<td>BDI score was a stronger predictor of QOLIE (all subscales) than AEP score.</td>
</tr>
<tr>
<td>Park and Kwon [27]</td>
<td>2011</td>
<td>Epilepsy & Behav</td>
<td>N = 150 PWE seizure-free at least 1 year and on monotherapy, Korea</td>
<td>QOLIE-31, BDI, AEP</td>
<td>Validation study of Spanish AEP, AEP score correlated independently with QOLIE-31, anxiety score, and depression score.</td>
</tr>
<tr>
<td>Carreño et al. [10]</td>
<td>2009</td>
<td>Epilepsy & Behav</td>
<td>N = 266 multicenter Spanish outpatient study</td>
<td>QOLIE-31, HADS, AEP</td>
<td>Validation study of Brazilian–Portuguese QOLIE-31; correlated with AEP and BDI.</td>
</tr>
<tr>
<td>da Silva et al. [28]</td>
<td>2007</td>
<td>Epilepsy & Behav</td>
<td>N = 250 outpatients in Brazil</td>
<td>QOLIE-31, BDI, AEP</td>
<td>NDDI-E score, independent of AEP, predicted subjective health status (QoL); *AEP also predicted QoL > 70% variance of QOLIE-89 explained by these 2 factors. Variance QOLIE was 0.57 for NDDI and 0.68 for AEP.</td>
</tr>
<tr>
<td>Gilliam et al. [5]</td>
<td>2006</td>
<td>Neurology</td>
<td>N = 205, mixed seizure types and severity (multicenter US)</td>
<td>QOLIE-89, MINI (depression), SCID (depression), BDI, CES-D; AEP</td>
<td>Strong association QoL/depression and QoL/AEP.</td>
</tr>
<tr>
<td>Szafarski et al. [29]</td>
<td>2006</td>
<td>Epilepsy & Behav</td>
<td>N = 99, medication resistant patients from monitoring unit single center US</td>
<td>QOLIE-89, Profile of Mood States (POMS) (depression profile) and AEP</td>
<td>CES-D scores associated with poorer Qol and AED effects.</td>
</tr>
<tr>
<td>Gillam et al. [8]</td>
<td>2004</td>
<td>Neurology</td>
<td>N = 62 adult outpatients with epilepsy</td>
<td>QOLIE-89, AEP</td>
<td>AEP stronger effect than BDI in predicting QOLIE.</td>
</tr>
</tbody>
</table>

AEP = Adverse Events Profile; BAI = Beck Anxiety Inventory; BDI = Beck Depression Inventory; CES-D = Center for Epidemiological Studies Depression Scale; HADS = Hospital Anxiety and Depression Scale; MINI = Mini International Neuropsychiatric Interview; NDDI-E = Neurological Disorders Depression Inventory for Epilepsy (NDDI-E); QOLIE = Quality of Life in Epilepsy; SCID = Structured Clinical Interview for DSM.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات