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We  present  an  alternative  approach  to assess  centrality  in  networks  which  does  not  rely  on  traditional
indices.  The  work  is  based  on  neighborhood-inclusion,  a partial  ranking  inducing  relation  of  nodes,  which
was  shown  to  be  preserved  by  many  existing  centrality  indices.  As such,  it can  serve  as  the shared  basis
for  centrality  in  networks.  We  argue  that  evaluating  this  partial  ranking  by itself  allows  for  a generic
assessment  of  centrality,  avoiding  several  pitfalls  that can arise  when  indices  are  applied.  Additionally,
we  illustrate  how  to  derive  further  partial  rankings  and  introduce  some  probabilistic  methods  to, among
others,  compute  expected  centrality  ranks  of  nodes.
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1. Introduction

Network centrality is commonly defined in terms of indices,
assigning numerical scores to the nodes of a network. These
scores induce a ranking which is meant to reflect the structural
importance of entities comprising a network. There is, however,
little agreement on what constitutes “structural importance” and
many indices exist, assessing it on various levels (Lü et al., 2016).
Much effort was put into conceptual clarifications (Freeman, 1979),
axiomatizations (Sabidussi, 1966; Nieminen, 1974; Ruhnau, 2000;
Landherr et al., 2010; Kitti, 2012; Boldi and Vigna, 2014) and clas-
sifications (Borgatti, 2005; Borgatti and Everett, 2006), yet formal
guidelines to restrict the set of possible indices or alternative meth-
ods are scarce.

Recently, Schoch and Brandes (2016) introduced a simple char-
acterization of centrality: if an actor has the same (and possibly
more) ties than another actor, it can never be less central. The
authors showed that there exists a partial ranking of nodes based on
neighborhood-inclusion which is preserved by many known cen-
trality indices. This finding can be used to characterize possible
centrality rankings (hence indices) as the set of rankings extending
the partial ranking given by neighborhood-inclusion.

Preorders as given above are a simple and well studied math-
ematical structure (Davey and Priestley, 2002; Grätzer, 2002),
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emerging in many different fields where objects need to be put in
order. A prime example provides the field of multi-criteria decision
making (MCDM) (Belton and Stewart, 2002; Triantaphyllou, 2013).
Given a set of alternatives valued by a set of criteria, the objective is
to find the “best” alternative. This is commonly done using indices
aggregating the criteria of each alternative into a preference rank-
ing. The preference rankings are supposed to preserve an intrinsic
dominance order, that is if an object is better for each criterion than
another, it should always be preferred to the dominated one. In a
sense, the idea of these indices is conceptually related to centrality
indices.

While indices are well established to build preference rank-
ings, they are perpetually under scrutiny for various fundamental
issues. Stewart (1992) summarizes that there exists “a plethora of
approaches”, where “some of these are ad hoc, and largely unjus-
tified on theoretical and/or empirical grounds”. Patil and Taillie
(2004) argue that indices are typically “adopted on grounds of
mathematical convenience or simplicity” without proper justifi-
cations. Triantaphyllou and Mann (1989) uncovered the infamous
decision making paradox which states that different index based
decision methods can yield different results when fed with the
same data. Put in other terms, the choice of index affects the choice
of the most preferred alternative. The paradox is also related to
the problem of rank reversals, i.e. the most preferred alternative
changes when an actually inferior alternative is added. This issue
was first described by Belton and Gear (1983).

The outlined issues in MCDM are fundamentally linked to net-
work centrality. We  too are faced with a plethora of indices that
are, according to Freeman (1979), “often unnecessarily compli-
cated”, “absolutely unintelligible from any theoretical perspective
whatever”, or “tend to add unnecessary and confusing complica-
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tions that make them difficult to interpret.” Moreover, choosing an
appropriate index in an empirical setting becomes a daunting task
when faced with the overabundance of indices. This may  foster trial
and error approaches, probing different indices until a satisfactory
result is obtained.

Many alternative methods exist to analyse and determine (par-
tial) rankings which do not necessarily rely on indices. In this work,
we focus on methods that build upon an intrinsic ordering of some
pairs of objects. These methods range from simple analyses of their
structure (Patil and Taillie, 2004; Pavan and Todeschini, 2004), how
to handle incomparability (Brüggemann and Carlsen, 2014; Bartel
and Mucha, 2014), constructing non-numerical rankings (Fishburn
and Gehrlein, 1975; Janicki, 2008, 2009) to computing all possi-
ble rankings that preserve the intrinsic ordering (Bubley and Dyer,
1999; Habib et al., 2001). The latter are mostly of interest to derive
(relative) rank probabilities and expected ranks (Brüggemann et al.,
2003; Brüggemann et al., 2004; Brüggemann et al., 2005; De Loof
et al., 2006, 2008; De Loof, 2009).

In the upcoming parts, we illustrate how these existing meth-
ods can be used in the context of network centrality, offering an
alternative or complementary approach to centrality indices. We
start in Section 2 by introducing the intrinsic ordering of nodes
based on neighborhood-inclusion. We  illustrate how to decom-
pose indices into three building blocks which facilitate further
theoretical considerations. Lastly, we show how the neighborhood-
inclusion preorder can be extended to denser partial rankings. The
remainder of the work builds on the theoretical results from this
section. In Section 3, we offer first alternatives to indices by intro-
ducing Hasse diagrams and assessing rank ambiguities with rank
intervals. Subsequently, we introduce probabilistic methods for
centrality in Section 4. These include relative rank probabilities
(How likely is it, that a node is more central than another?) and
expected ranks of nodes (How central is a node expected to be con-
sidering all possible rankings?). In Section 5, we  illustrate how the
presented methods can be employed in empirical research. Finally,
we end with some concluding remarks and a discussion in Section
6.

2. Centrality indices and partial rankings

Centrality is commonly defined in terms of mappings c : V →
R≥0 assigning real valued scores to the set of nodes V of a graph
G = (V, E) and are interpreted as

c(u) > c(v) ⇔ u is more central than v.

The most widely used indices are degree, betweenness (Freeman,
1977) which was earlier introduced as rush by Anthonisse (1971),
closeness (Bavelas, 1948; Sabidussi, 1966), and eigenvector cen-
trality which was introduced for the first time by Wei  (1952), later
generalized by Berge (1958) and reintroduced by Bonacich (1972).
Recently, Schoch and Brandes (2016) showed that there exists a
shared basis among a large group of indices, including these pro-
totypical ones, by a comparison of neighborhoods in graphs. The
idea is based on a decomposition of indices into the following three
generic steps:

(1) Deriving indirect relations via path algebras.
(2) Defining vertex positions via coordinates evaluating indirect

relations.
(3) Defining centrality scores by aggregating values of positions.

In this section, we formally introduce this framework and illus-
trate how each of these steps leads to the definition of a partial
ranking on networks. Additionally, we illustrate how this frame-

work can be used to derive additional partial rankings, which are
preserved by specific classes of indices.

2.1. Indirect relations

Indirect relations on graphs can be characterized with so called
path algebras based on the algebraic structure of semirings.1

Definition 1. An algebraic structure (S, ⊕, �, 0̄, 1̄) on a set of val-
ues S is called a semiring if and only if

(i) ⊕, � : S × S → S are closed and associative
(ii) 0̄, 1̄ ∈  S are neutral elements of ⊕ and �, respectively

(iii) 0̄ is absorbing for �
(iv) ⊕ is commutative and � distributes over ⊕

Path algebras characterize indirect relations on graphs G = (V, E)
for vertices s, t ∈ V by associating a value from a semiring with every
(s, t)-path and then aggregating over all such paths. We  associate
each edge with an element ē ∈ S, the edge value, so that we can
characterize a graph G = (V, E) by a matrix A ∈ SV×V with entries

ast =
{
ē {s, t} ∈ E

0̄ otherwise

for all s, t ∈ V. An (s, t)-path P with vertex sequence s =
v0, v1, . . .,  vk−1, vk = t is then evaluated by

a(P) = �ki=1avi−1,vi , (1)

where a(P) = 1̄ if k = 0. The indirect relation between s and t is then
obtained from

a∗
st = ⊕pa(P), (2)

where all possible (s, t)-paths are aggregated. If no such path exists,
a∗
st = 0̄ holds. The term a∗

st is also known as the closure of ast. A con-
venient joint formulation can be derived in terms of matrices. Let
A ∈ SV×V be a matrix as defined above, and let 1 ∈ SV×V be the matrix
with entries 1̄ on the diagonal and 0̄ elsewhere. This formulation
gives rise to a semiring of matrices (SV×V, ⊕,  �, 0, 1), where ⊕ and
� replace the usual matrix addition and multiplication. By defining
A0 = 1 and Ak = A � Ak−1 for k ≥ 1, we obtain the closure A∗ = ⊕∞

k=0A
k

with entries a∗
st as above.

For later purposes, we need two  additional properties of semir-
ings. The first defines an order relation on the set S.

Definition 2. The canonical preorder of a semiring (S, ⊕, �, 0̄, 1̄)
is  given by

a ≤ b if a ⊕ c = b for some c ∈ S.

Definition 3. Let (S, ⊕, �, 0̄, 1̄)  be a semiring and ē ∈  S be an edge
value. The semiring is called decreasing if

ē� a ≤ a

holds for all a ∈ S.
As an example, consider the geodesic semiring (N0 ∪

∞, min, +, ∞,  0) with edge value ē = 1. By concatenation with
Eq. (1) and aggregation via Eq. (2), we obtain entries a∗

st = dist (s, t)
and thus the distance matrix as the closure A* of the corresponding
matrix semiring. The geodesic semiring is decreasing, since adding
an edge to a path increases the distance. It should be noted though

1 A comprehensive introduction of semirings and path algebras is given by
Gondran and Minoux (2008).
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