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a b s t r a c t

In this work, mate choice is modeled by means of the abstract concept of mutual mating propensity. This
only assumes that different types of couples can have different mating success. The model is adequate for
any population where mating occurs among distinct types. There is no extra assumption about particular
mating scheme or preference model. The concept of mutual mating propensity permits to express the
observed change in the mating phenotypes as the gain in information with respect to random mating.
The obtained expression is a form of the Price equation in which the mapping between ancestral and
descendant population is substituted by a mapping between random mating and non random mating
population.

At the same time, this framework provides the connection between mate choice and the exact
mathematical partition of the choice effects, namely sexual isolation, sexual selection and a mixed effect.
The sexual selection component is the sum of the intra-sexual male and female selection.

The proposed framework helps to unveil previously hidden invariants. For example, if the mutual
preference between partner types is multiplicative there is no sexual isolation (inter-sexual selection)
effect on the frequencies, i.e. the only possible effect of mate choice is intra-sexual selection. On the
contrary, whatever the contribution of each partner to the mutual preference, if it comes as a non-
multiplicative factor, there is at least an inter-sexual selection detectable effect.

This new view over the mate choice problem, permits to develop general mating propensity models
and to make predictions of the mate choice effects that may emerge from such models. This possibility
opens up the way for setting a general theory of model fitting and multimodel inference for mate choice.

Thus, it is suggested that the proposed framework, by describing mate choice as the flow of informa-
tion due to non-randommating, provides a new important setting for exploring different mating models
and their consequences.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Mate choice is arguably one of the most active areas of evolu-
tionary research. There has been a lot controversy regarding the
concept of mate choice. The debate aroundmate choice was due in
part to its importance for fields so diverse as population genetics,
evolutionary-ecology, animal behavior, sociology, or psychology.
In addition, there has been an excess of verbal models and im-
precise terminology regarding different aspects of mate choice
(Edward, 2015). Mate choice can be broadly described as the effect
of some expressed traits leading to non-randommating. Under this
broad definition there are various aspects that can be considered.
Yet Darwin (1871) distinguishes between intrasexual selection and
intersexual selection. The first arises directly from competition
among individuals of the same sex while the second arises from
choice ofmates by the other sex (Kuijper et al., 2012). Alternatively,
from a population genetics point of view, mate choice is defined as
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the observed mating frequency deviation with respect to random
mating, considering population gene or phenotype frequencies. So
defined, mate choice can be partitioned into (intra)sexual selec-
tion, defined as the observed change in gene or phenotype frequen-
cies in mated individuals with respect to population frequencies,
and sexual isolation (behavioral isolation or intersexual selection),
defined as the deviation from randommating inmated individuals
(Rolán-Alvarez and Caballero, 2000). In this work I followed these
definitions of mate choice, intrasexual and intersexual selection.

For an alternative description of these concepts and a discussion
about some of the most widely used descriptions of evolutionary
change within the context of sexual selection, I refer the reader to
Kuijper et al. (2012) and Rosenthal (2017).

The many aspects and complexity of mate choice justify the
extensive research that has been made in the last decades pro-
ducing several theoretical models and empirical tests. Related
to modeling and detection of mate choice, there is the question
about the correct null hypothesis for testing the evolution of mate
choice. The Lande–Kirkpatrick (L–K) model has been proposed as
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a null model (Kirkpatrick, 1982; Lande, 1981; Prum, 2010; Roff
and Fairbairn, 2014). This model assumes neutral genetic variation
for the mating preference trait while the target trait can be under
natural selection. However, the L–K role as a null model is not clear
when the preference is set by similarity (preference and target trait
coincide) and the trait is under divergent selection (Servedio et al.,
2011), i.e. the trait is ‘‘magic’’ sensu Gavrilets (2004), because in
this case the preference trait is already under selection (Hughes,
2015).

Therefore, there is still a need for both, null models and a gen-
eral framework, where the key essential facts of the mate choice
can be adequately described. Here, I argue that the formalism
provided by the information theory in the form of the Jeffreys’
divergence is the right tool to do so.

The information theory has already been elegantly applied for
describing evolutionary change (Frank, 2009, 2012b, 2013). The
present work takes advantage of that mathematical structure and
applies it for modeling the change in mating frequencies due to
mate choice. As far as I know there is no previous attempt of
describing mate choice from the viewpoint of the information
theory. Nevertheless, the potential of the informational view for
evolutionary ecology has been already suggested (Dall et al., 2005).

First, I defined a general model that only requires an abstract
functional relationship connecting the observed mating frequen-
cies with the expected by random mating from the population
gene or phenotype frequencies. This suffices for developing a gen-
eral information equation for mate choice that can be adequately
partitioned into intrasexual and intersexual information compo-
nents, plus a mixed term provoked by the confounding effect
of the marginal frequencies when the mating propensity effects
are asymmetric. Interestingly, the three terms can be separately
estimated from the observed frequencies and so, the researcher
can study how different models and parameters translate into
the different mate choice components. Also, it is proposed that
this setting provides the baseline for solving the mate choice null
hypothesis problem, since the null model emerges naturally from
the idea of zero information. Thus, the correct null should not rely
on neutral preference or trait genes but on zero information.

The utility of this framework is shown by analyzing a real data
example. I will show how the view obtained from the unveiled
relationships can be utilized to classify different general models
from its consequences which facilitates the multimodel inference
of the mate choice. However, a deeper study on the outcomes of
different forms of the mating preference functions is out of the
scope of the present article and is part of a different paper.

2. Model of mate choice

Asmentioned above, the followingmodel is as a particular spec-
ification of the information theory interpretation for evolutionary
models, proposed in Frank (2012b, 2013). The general framework
developed by this author fits perfectly for the purpose of describing
the occurrence of non-randommating and the flow of information
that it provokes. Remarkably, once the basic equation for the
gain in information due to non-random mating is formalized, the
relationship between mate choice and its different evolutionary
outcomes emerges naturally, providing a clear and useful picture
of the intrasexual and intersexual selection effects.

2.1. General model

Let us consider a population with a number of n1 females and
n2 males. For a given female phenotype X (e.g. shell color) with
K different classes having values X1, X2 . . .Xk, the frequency of the
phenotype Xi in the female population is p1i = n1Xi/n1, i.e. the
number of females with that phenotypic value divided by the total

number of females. Similarly, for the male phenotype Y (could be
the same as X) with K ′ classes, the frequency of Yj in the male
population is p2j = n2Yj/n2.

In this way, by using the frequency of the phenotype for each
sex, the expected mating frequencies if mating is at random are

qij = p1i × p2j.

Now, given a female phenotype Xi and a male phenotype Yj, let
us define the mutual mating propensity mij(x, y, e) as the number
of matings of Xi with Yj after their encounter in the environment e.
The normalized mating propensity is

mij(x, y, e)/M

where M =
∑

i,jqijmij(x, y, e).
Then, the observed mating frequencies in a given environment

e can be expressed as

q′

ij = qij
mij(x, y, e)

M
. (1)

Therefore, the observedmating frequencies are the result of the
functions mij(x, y, e) (hereafter noted as mij), that can be any kind
of composition of the preference of female Xi for male Yj, and vice
versa, in the environment e.

Note that random mating is a particular case of the model
in (1) when the propensities are equal for every mating pair.
The mutual mating propensity functions can represent empirical
or analytical functions, as for example the Gaussian-like prefer-
ence functions (reviewed in Carvajal-Rodriguez andRolán-Alvarez,
2014). Moreover, each mij can be composed of female and male
preferences, so mutual mate choice models (Bergstrom and Real,
2000) are also available under this setting. The standardized mij
values could also be estimated a posteriori from the data. In this
case they coincide with the pair total index i.e. the ratio of the
frequency of the observed types divided by the expected pair types
calculated from the total frequencies (PTI ij = q′

ij/qij, Rolán-Alvarez
and Caballero, 2000) which becomes an observation of the mutual
mating propensity from the mating phenotypes (see below).

Once we have the mating frequencies as defined in (1), the
change with respect to randommating is

∆qij = q′

ij − qij = qij(
mij

M
− 1).

The mean population change for a combined phenotype Z =

X ∗ Y is

∆Z =

∑
i,j

∆qijZij.

Because the relationship in (1) that is defined by ratios is more
natural to express the quantities in the logarithmic scale and sowe
can express mij as

mij = M
q′

ij

qij
which in the logarithmic scale becomes

lij = log(mij) = log (M) + log
(q′

ij

qij

)
.

Thus, ifwe take the logarithmof the propensity as the combined
phenotype Z and by noting that Σ∆qij = 0 and that log(M) is
constant through the summation, then we can measure the mean
population change ∆L in relative propensity as

∆L =

∑
i,j

∆qijlij =

∑
i,j

∆qijlog
(q′

ij

qij

)
= J

(
q′, q

)
≡ JPTI (2)

which is the Kullback–Leibler symmetrized divergence (noted as
Jeffreys in Frank, 2012b), that measures the gain in information
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