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a b s t r a c t

The question as to why most complex organisms reproduce sexually remains a very active research area
in evolutionary biology. Theories dating back to Weismann have suggested that the key may lie in the
creation of increased variability in offspring, causing enhanced response to selection. Under appropriate
conditions, selection is known to result in the generation of negative linkage disequilibrium, with the
effect of recombination then being to increase genetic variance by reducing these negative associations
between alleles. It has therefore been a matter of significant interest to understand precisely those
conditions resulting in negative linkage disequilibrium, and to recognise also the conditions in which the
corresponding increase in genetic variation will be advantageous. Here, we prove rigorous results for the
multi-locus case, detailing the build up of negative linkage disequilibrium, and describing the long term
effect on population fitness for models with and without bounds on fitness contributions from individual
alleles. Under the assumption of large but finite bounds on fitness contributions from alleles, the non-
linear nature of the effect of recombination on a population presents serious obstacles in finding the
genetic composition of populations at equilibrium, and in establishing convergence to those equilibria.
We describe techniques for analysing the long term behaviour of sexual and asexual populations for
such models, and use these techniques to establish conditions resulting in higher fitnesses for sexually
reproducing populations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sexual propagation must certainly confer immense benefits on
those populations undergoing it, given that sex involves substan-
tial costs such as the breaking down of favourable gene combina-
tions established by past selection. There are many hypotheses as
to the form these advantages take, and they fall naturally into two
groups (Felsenstein, 1974; Maynard-Smith, 1978; Kondrashov,
1993). On the one hand, a function of sexual reproduction andmei-
otic recombinationmay be in providing immediate and physiolog-
ical benefits, such as allowing repair of double strand DNA damage
(Bernstein and Bernstein, 1991; Michod, 1993). Such mechanisms
alone, however, are unlikely to account for the continued preva-
lence of sexual reproduction (Barton and Charlesworth, 1998; Kon-
drashov, 1993; Maynard-Smith, 1988), and so, on the other hand,
decades of research have seen evolutionary biologists looking to
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develop explicit theoretical models which explain the advantages
of sex in terms of the interaction between variation and selec-
tion. Many of these models (Barton, 1995; Otto and Barton, 1997;
Hill and Robertson, 1966) focus on ideas originally due to Morgan
(1913), Fisher (1930) and Muller (1932) which stress the ability of
recombination to place beneficial mutations together on the same
chromosome. In a similar vein, onemay consider the accumulation
of deleterious mutations (Muller, 1964; Felsenstein, 1974). Since
the effect of selection is dictated by levels of genetic variability in
a population, one may also look more directly to understand the
effect of recombination on genetic variance. The key observation
here is that under appropriate conditions negative linkage dise-
quilibria will build up, impeding the response of the population to
directional selection (Mather, 1943; Felselstein, 1965).

Themechanisms bywhich negative linkage equilibriummay be
created in the first place, may be classified as either deterministic
or stochastic. A key finding for deterministic models (Barton,
1995) is that recombination may be favoured when weak negative
epistasis (measured relative to the multiplicative contribution of
individual gene fitnesses) exists between favourable alleles. There
is also strong evidence that stochastic effects (Hill and Robertson,
1966; Barton and Otto, 2005) may be substantial in the realistic
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setting of finite populations. The basic mechanism in this case may
be seen as follows. In the rare event that particularly beneficial
alleles at distinct loci combine in a single genome, selection
acts quickly to achieve fixation for the coupled beneficial alleles,
meaning that the associated positive disequilibrium disappears
quickly. In the case of a strongly beneficial allele which initially
appears on a genome with weaker alleles at other loci, however,
selection is slowed down (when recombination is weak or non-
existent), meaning that the negative disequilibrium persists for a
much longer period of time. Any variance in disequilibrium thus
ultimately leads to negative disequilibrium on average.

Here, we shall consider a deterministic setting in which sex is
seen to robustly outperform asex across a broad spectrum of mod-
els, and in which the fitness contributions of genes which can be
attained via mutation may be bounded or unbounded. We shall
make certain simplifying assumptions. It will be convenient to
carry out most of our analysis, for example, relative to models in
which individual genes contribute additively to the fitness of the
genome, and relative to this assumption of additive contributions
from individual genes we shall assume zero epistasis. It should be
noted that seen relative tomodels in which genes contribute to fit-
ness multiplicatively, our model therefore assumes negative epis-
tasis, and so may be expected to display benefits to recombination
(e.g. Barton, 1995). We shall also assume that loci are unlinked,
so that they either correspond to loci on distinct chromosomes
(one may consider that we are choosing a ‘representative’ from
each chromosome), or else lie at sufficient distances when they
share a chromosome. Aswell as facilitating themathematical anal-
ysis, these simplifications allow us to establish the most basic con-
ditions under which certain mechanisms of variance conversion
(described in detail in later sections) will operate with substantial
effect. If a phenomenon is already observed in such a model, it is
because no extra hypotheses are necessary to make it true — that
a cause is already present within the few features of the simple
model. Moreover, analysing our proofs, we can extract key ideas
that surely carry over to more general models. An added benefit
of working with these simplified models is also a dramatic reduc-
tion in the computational complexity of running large simulations.
Even before providing mathematical proofs of our results, we are
able to run simulations modelling populations with many more
loci and more alleles than would otherwise be possible. Simula-
tions for these vast fitness landscapes robustly show sexual popu-
lations achievingmore rapid increases inmean fitness. Fig. 1 shows
a small cross-section of the results of simulations for models with
finite or infinite haploid populations and where fitness contribu-
tions from individual genes may be combined additively or mul-
tiplicatively (further examples are given in Figures 6–10 Appendix
E). It is worth noting a fact first observed byMaynard-Smith (1968)
and illustrated in (e) of Fig. 1, that in themultiplicative model with
zero epistasis and infinite populations beginning in linkage equi-
librium, the sexual and asexual populations remain identical. This
holds because selection then preserves linkage equilibrium.

We then concentrate our mathematical analysis on the infinite
populations additive model, since dealing with this case allows us
to avoid some of the complexities inherent in the finite population
models while illustrating basic principles which carry through
to the finite population additive model. We are able to give a
rigorousmathematical analysis of themanner in which, during the
process of asexual propagation, a negative linkage disequilibrium
will be created and maintained, meaning that an occurrence of
recombination at any stage of the process will cause an immediate
increase in fitness variance and a corresponding increase in the rate
of growth in mean fitness. For contexts where there is a large but
finite bound on allele fitnesses, it is not surprising that the long
termbehaviour differs qualitatively from the casewhere there is no
a priori bound of the fitnesses of genes resulting frommutation. In

this case, a standard application of the Perron–Frobenius Theorem
suffices to establish that the asexual process converges to a fixed
point of the corresponding dynamical system, but a deeper analysis
is required in order to establish the mean fitness of the population
at this fixed point and to relate this to the long term behaviour for
sexual populations. We develop techniques which suffice to carry
out such an analysis, and establish higher resulting mean fitnesses
for sexual populations in these bounded models.

2. The model

Weconsider haploid populationswith non-overlapping genera-
tions. In the absence of dominance between alleles at a single locus,
our analysis could easily be extended to consider diploid popula-
tions. We describe here the additive infinite population variants of
the model (other variants are described in Appendix D). We do not
assume alleles come from a pre-existent pool, but consider a (form
of random walk mutation) model in which alleles are created by
mutation as time passes, possibly without any bound on attainable
fitness. For certain aspects of the mathematical analysis, it will be
convenient to be able to assume that gene fitnesses occur in a dis-
crete range rather than taking any real value. We ensure this by
assuming that gene fitnesses take integer values. Appropriate scal-
ing means this entails essentially no loss in generality—in order to
simulate amodel inwhich fitnesses take values to ddecimal places,
we can simply multiply all fitness values by 10d, apply the model
as described here, and then finally divide by 10d in order to cor-
rect fitness values at any stage of the process. One could consider
a model in which fitnesses can take any real values, without sub-
stantial changes in the behaviour of themodel. Most other features
of themodel, whichwe nowdescribe inmore detail, are essentially
standard in the literature.

Each instance of the model is determined by three principal
parameters: ℓ, D and µ. First, ℓ ∈ N (> 1) specifies the
number of loci. With each individual specified by ℓ genes, in the
absence of epistasis, we need only be concerned with the fitness
contributions corresponding to those genes, and so each individual
can be identifiedwith a tuple x = (x1, . . . , xℓ) ∈ Zℓ. The fitness of x
is F(x) =

ℓ
i=1 xi. (For the multiplicative model, one would define

F(x) =
ℓ

i=1 xi instead.) Second, the domain D ⊂ Zℓ determines
which individuals are allowed to exist. We will use three types of
domains in this paper: The N-model uses as domainD = Nℓ, where
N = {1, 2, 3, . . . .}; the Z-model uses D = {x ∈ Zℓ

: F(x) > 0};
and the bounded-model uses D = {1, . . . ,N}

ℓ for some upper
bound N ∈ N on gene fitness contributions. In practice, there is
almost no difference between the N- and Z-models, but there are
situations when it is simpler to consider one or the other. Third,
µ:Z → R≥0, the mutation probability function, determines how
mutation affects gene fitness contributions:µ(k) is the probability
that the fitness contribution of a gene will increase by k. For the
sake of simplicity, we assume this distribution to be identical for all
loci. While there is no clear canonical choice for µ, the behaviour
of the model is robust to changes in this parameter so long as
negative mutations are more likely than positive ones, both being
possible. This is because any such choice of µ will approximate
a Gaussian distribution over multiple generations. The simplest
mutation distributions onemay consider are those taking non-zero
values only on {−1, 0, 1}. Unless stated otherwise, it should be
assumed that from now on mutations are of this form and that
µ(0) > µ(−1) > µ(1) (giving a formof stepwise-mutationmodel
Ohta and Kimura, 1973).

By a population, we mean a probability distribution φ:Zℓ
→

R≥0, where φ(x) is the proportion of individuals that have
‘genotype’ x ∈ Zℓ. For a population φ, we shall also use X =

(X1, . . . , Xℓ), where the Xi’s take values in Z, to denote a random
variable that picks an individual with gene fitness contributions
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