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a b s t r a c t

One of the most important problems in complex networks is how to detect communities
accurately. The main challenge lies in the fact that traditional definition about communi-
ties does not always capture the intrinsic features of communities. Motivated by the ob-
servation that communities in PPI networks tend to consist of an abundance of interacting
triad motifs, we define a 2-club substructure with diameter 2 possessing triad-rich prop-
erty to describe a community. Based on the triad-rich substructure, we design a DIVision
Algorithm using our proposed edge Niche Centrality DIVANC to detect communities effec-
tively in complex networks.We also extend DIVANC to detect overlapping communities by
proposing a simple 2-hop overlapping strategy. To verify the effectiveness of triad-rich sub-
structures, we compare DIVANC with existing algorithms on PPI networks, LFR synthetic
networks and football networks. The experimental results show that DIVANC outperforms
most other algorithms significantly and, in particular, can detect sparse communities.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of themost important problems in complex networks is how to detect communities accurately [1]. Communities are
the subsets of vertices with real physical sense. For example, in biological networks they are referred to as various biological
functional modules such as protein complexes, GO terms and pathways; in social networks, communities may be various

∗ Corresponding author.
E-mail address: lgao@mail.xidian.edu.cn (L. Gao).

http://dx.doi.org/10.1016/j.physa.2016.10.021
0378-4371/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

http://dx.doi.org/10.1016/j.physa.2016.10.021
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2016.10.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:lgao@mail.xidian.edu.cn
http://dx.doi.org/10.1016/j.physa.2016.10.021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


54 S. Jia et al. / Physica A 468 (2017) 53–69

social circles such as groups of people with common interests, etc. Traditional communities, which are typically described
as dense subgraphs (subnetworks) explicitly or implicitly. The underlying assumption is that objects in some communities
really tend to interact more frequently than in other regions of the network. Around the issue of how to detect communities,
scholars have proposed many popular algorithms based on traditional community definitions which can identify parts
of communities successfully at a certain degree. Examples of algorithms that detect communities by dense subnetworks
include (i) random-walk based methods such as MCL [2] and INFOMAP [3]; (ii) seed-growing methods such as MCODE [4]
and ClusterOne [5]; (iii) algorithms based on clustering, optimization, or statistical techniques such as LinkComm [6],
LOUVAIN [7], and OSLOM [8]; and (iv) algorithms based on deeper graph-theoretic features such as EPCA [9–11].

While traditional definitions can offer some insight into some of the structure of communities, more and more recent
studies show that these intuitions are unreliable [12–16]. Some of these examples include: overlapping communities have
a higher density of links in the overlapping parts than in the non-overlapping ones, which are in contrast with the common
picture of communities [16]; there is a paradox that the detection of well-defined communities is more difficult than the
identification of ill-defined communities [12]. All of these counterintuitive evidences hint at the necessity of modifying the
general defining characteristics of traditional communities.While there is a general consensus on the fact that there is a need
for an adjustment of the notion of community or clusters, there is no clear direction to a remedy. Scholars [15] point out
that there are two possible scenarios for filling the gaps between traditional definitions and communities. One is to include
additional topological features in refining the traditional definitions beyond the standard measures of link density, degree
correlations or density of loops, etc.; the other is to add requirements based non-topological knowledge, such as domain-
specific background knowledge [17–19] for the detection of communities. However, in the former case, solely adjusting the
structural conditions sought for may still not obtain satisfying results as the essence of communities in all contexts may not
be characterized by equivalent topology. In the latter case, adding various domain-specific background knowledge may be
effective on a limited number of cases, but the reliance on rigid domain-specific knowledge makes the resulting algorithms
unlikely to exhibit scalability or transferability to other domains.

An ideal paradigm for fully analyzing communities would include identification of communities via certain specific
intrinsic features, combined with a method for capturing deeper domain-specific structure in a general topological
framework on which one can further develop algorithms. Here, we develop such a new framework by incorporating a
novel and more subtle assumption based on graph-theoretic properties of communities and design efficient computing
procedures to detect non-overlapping and overlapping substructures that have the desired properties. As shown in Fig. 1(a)
and (b), both of the communities ‘nuclear origin of replication recognition complex’ [20] (dense) and ‘GID complex’ [21]
(sparse) consist of abundantly interacting triad motifs, for instance. More details about the two complexes can be found in
Appendix A. Motivated by the observation that communities in a PPI network are either quite dense or quite sparse and tend
to consist of an abundance of interacting triad motifs [22–25], we define a 2-club substructure with diameter 2 possessing
triad-rich property to describe a community. Based on the triad-rich substructure, we design a DIVision Algorithm using our
proposed edge Niche Centrality DIVANC to detect communities effectively in complex networks. We also extend DIVANC to
detect overlapping communities by proposing a simple 2-hop overlapping strategy. To verify the effectiveness of triad-rich
substructures,we compareDIVANCwith existing algorithms on PPI networks, LFR synthetic networks and football networks.
The experimental results show that DIVANC outperforms most other algorithms significantly and, in particular, can detect
sparse communities.

The rest of the paper is organized as follows. In Section 2, we present our framework for detecting communities. After
discussing our datasets and providing statistical evidence that motivates and supports our triad-rich assumption about
communities in Sections 2.1 and 2.2, we give a formal definition of a 2-club substructure in Section 2.3. In Section 2.4, we
discuss the details of our algorithm for 2-club substructure detection, including a new edge-centrality measure specifically
designed for 2-club substructures as well as a 2-hop-based strategy for extracting overlapping 2-club substructures. In
Section 3, we report and discuss our experimental results. In Section 4, we conclude the paper and give closing discussion.

2. Methods

2.1. The datasets

We apply our framework on PPI networks [26,27], LFR synthetic networks [28,29] and football networks [30,31]. In
the following, we give details about the relative networks and six golden standard sets of communities in PPI networks,
respectively.

S. cerevisiae PPI networks (SceDIP) are obtained from DIP [26] and H. sapiens PPI networks (HsaHPRD) are extracted from
HPRD [27]. For SceDIP, we use the sets from the Munich Information Center for Protein Sequences (MIPS) [32], Saccha-
romyces Genome Database (SGD) [33] and S. cerevisiae GO terms (Sce GO term) as golden standards [34,35]. For HsaHPRD,
we use the sets of Human Protein Complex Database with a Complex Quality Index (PCDq) [36], Comprehensive Resource
of Mammalian Protein Complexes (CORUM) [37] and H. sapiens GO terms (Hsa GO term) [34,35] as golden standards. SceDIP
consists of 4980 proteins and 22076 interactions;HsaHPRD consists of 9269 proteins and 36917 interactions. The GO terms
are not composed of all the terms but the high-level GO terms whose information content is more than 2 [34,35]. The def-
inition of the information content (IC) of a GO term g is IC = − log(|g| / |root|) as given in the literature [34], where ‘root ’
is the corresponding root GO terms across the three aspects of molecular function (MF), biological process (BP) or cellular
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