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a b s t r a c t

We consider an optimization problem in which the cost of a feasible solution depends on a set of un-
known parameters (scenario) that will be realized. In order to assess the cost of implementing a given
solution, its performance is compared with the optimal one under each feasible scenario. The positive
difference between the objective values of both solutions defines the regret corresponding to a fixed
scenario. The proposed optimization model will seek for a compromise solution by minimizing the ex-
pected regret where the expectation is taken respect to a probability distribution that depends on the
same solution that is being evaluated, which is called solution-dependent probability distribution. We
study the optimization model obtained by applying a specific family of solution-dependent probability
distributions to the shortest path problem where the unknown parameters are the arc lengths of the
network. This approach can be used to generate new models for robust optimization where the degree of
conservatism is calibrated by using different families of probability distributions for the unknown
parameters.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization problems with uncertainty in the objective
function or in the set of constraints have received increasing at-
tention over the last decades due to the importance of their
practical applications (see, e.g., [5–8,10,11]). Robustness Analysis
and Stochastic Programming are two of the theoretical frame-
works developed in Mathematical Programming to manage un-
certainty or risk in order to find compromise decisions with a good
behavior under any likely input data.

In the stochastic approach, it is assumed the knowledge of the
probability distribution of the vector of unknown parameters.
Every realization of this random vector defines a scenario asso-
ciated to a deterministic instance of the optimization problem.
Under this paradigm, the decision maker adopts a compromise
solution by minimizing the expected cost.

In the robust optimization models, the scenarios are described
without any information about how likely they can occur. The
worst-case approach is one of the techniques within this frame-
work. Its objective is to find a solution that performs reasonably
well for all the scenarios. In this context, the minmax regret op-
timization model aims at obtaining a solution minimizing the

maximum deviation (regret) between the cost of a given solution
and the optimal cost under any possible scenario.

The stochastic approach is suitable when the decision maker
wants to implement the obtained solution in repetitive situations.
On the other hand, the robust optimization model is more con-
servative trying to hedge the system against the unknown sce-
nario that may happen in specially sensitive situations needing
precautionary measures (environmental interventions, public
health actions, emergency contingency plans,…).

However, in some cases, the expected cost and the maximum
regret can be viewed as particular instances of a family of objective
functions obtained by taking the expectation according to dis-
tributions of probability that depend on the solution which is
evaluated. In other words, this model introduces the possibility of
using a sort of subjective probabilities that model the behavior of
the uncertain vector of parameters from the point of view of the
feasible solution that is considered to be implemented. The re-
sulting approach enables us to generate new optimization models
with decision criteria that reflect certain compromise between the
above two perspectives and could give rise to new models used in
practical situations where none of them may fit the decision ma-
ker needs (see e.g. [9]).

In the context of robust optimization, there exists a precedent
to this idea and was proposed by Averbakh in [4], where a new
minmax regret model is studied with a set of scenarios that is
induced by the choice of the feasible solution. This paper considers
subset-type optimization problems, where the feasible solutions
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are some subsets of a finite ground set whose elements have un-
known weights. The model allows only uncertainty on those
weights of the elements included in the chosen feasible solution
that can take on any value of the associated uncertain intervals. On
the other hand, the weights that were not included in the chosen
solution, cannot deviate from their nominal values.

The paper is organized as follows, in the section two an opti-
mization model that minimizes the expected regret is proposed. In
this model, it is allowed the probability distribution for the un-
known vector of parameter (scenario) may depend on the feasible
solution evaluated. By modifying such a dependence it is easy to
show how this model can be instantiated in other known models
in the field of Stochastic Programming and Robust Optimization. In
the third section a new family of probability distributions for the
coefficients of the linear objective of a combinatorial optimization
problem is considered. Given a feasible solution, the correspond-
ing probability distribution for the cost scenario is fixed and a
closed-form expression for the expected cost can be derived. It is
also shown how to take advantage of the structure of this objective
function in order to solve combinatorial problem where the fea-
sible set is defined through linear constraints with unimodular
matrix. In the last two sections, an application of this model to the
shortest path in a network with uncertain arc lengths is studied
and a computational experiment is presented.

2. Expected cost with solution-dependent probability
distributions

Let us consider the following stochastic optimization problem:

ξ( ) ( )∈
E f xmin , Px X

x

where

� f is a real-valued function,
� x is a decision vector constrained to be in the set X,
� ξ is a random vector defined on a probability space Ω( ) P, , x

where the measure Px depends on the decision vector x and
� Ex represents the expectation operator (of the random variable

ξ( )f x, ) according to the distribution generated by the prob-
ability measure Px. ξ( )E f x,x is supposed to be finite for every

∈x X .

The problem (P) considered here is static, that is, there are not
recourse variables in different stages and X is a finite set of feasible
actions (combinatorial optimization) which, in particular, implies
that the minimum of the function ξ( )E f x,x exists in X. The vector ξ
defines a set of parameters under which the behavior of the
system is measured. Every realization of this vector will be called
hereafter a scenario and it is assumed known the set of all the
possible realizations, the set S.

The optimization model given by (P) has been intensively stu-
died in the literature in those cases in which the measure of
probability Px does not depend on the decision variables x. The
resulting problem is one of the central topics of the Stochastic
Programming [5–7,10]. An optimal solution xn obtained by solving
this optimization model has good properties, in practice, when it is
regularly implemented in the system, over and over again, under
the same stochastic conditions. This could be a common situation in
production planning, inventory optimization or warehouse location.
In these cases, if the conditions under which the solution is im-
plemented are independent of the previous implementations, the
Strong Law of Large Numbers (see e.g. [14]) says the average of the
costs converges almost sure to the optimum objective value of (P),
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where ξ ξ ξ… …, , , ,n1 2 are independent random vectors with the
same probability distribution.

Hence, once an optimal solution of the problem is regularly
implemented whatever scenario may happen, the average cost
converges to the optimal one. However, one should never forget
that the success of this result depends on the convergence speed
of the sequence of random average costs incurred by the system
under this solution xn.

In those situations where the solution will be implemented
sporadically such as contingency plans, recovery planning after a
disaster or, in general, solutions whose performance needs to be
protected from unknown scenarios, the minmax regret optimiza-
tion model could be considered. Under this paradigm, a solution
whose performance is as near as possible to the optimal one under
any of the considered scenarios is sought.

The expected cost and the minmax regret cost define models
very different, however both of them can be integrated in a more
general model under the formulation (P).

Let us define the function ξ( )z x, as the cost incurred by the
systemwhen the solution ∈x X is implemented and the scenario ξ
takes place. For example, ξ could be the coefficients of a linear cost
function, ξ ξ( ) = 〈 〉z x x, , . The following random function measures
the difference between the cost associated to a given solution and
the optimal one, ξ( )z , under the scenario ξ,

ξ ξ ξ( ) = ( ) − ( ) ( )f x z x z, , , 1

where

ξ ξ( ) = ( ) ( )∈
z z xmin , . 2x X

Let us observe that, since the set X is finite, the function ξ( )z is a
random variable because it is the minimum of a finite number of
random variables.

Taking into account the linearity of the expectation operator, it
is obvious that, if =P Px for every ∈x X then, the problem (P)
reduces to minimize the expected cost, that is,

ξ ξ ξ ξ ξ( ) = ( ) − ( ) = ( ) − ( )
∈ ∈ ∈

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥Ef x Ez x Ez Ez x Ezmin , min , min , ,

x X x X x X

where it has been assumed the existence (finiteness) of the ex-
pectation of each random variable appearing in the above chain of
equations. Hence, in this case, the problem (P) coincides with the
one of minimizing the mean of the cost.

On the other hand, if for each feasible solution in X, it is as-
sumed the existence of a scenario where its objective function
value has the highest difference with respect to the minimum
value in the feasible set for that scenario, that is,

ξ ξ ξ( ) ∈ [ ( ) − ( )] ∀ ∈
( )ξ

x z x z x Xarg max , , ,
3

a probability measure Px that concentrates all the probability mass
at ξ ( )x can be defined, that is,

ξ ξ= ( ) = ∀ ∈⎡⎣ ⎤⎦P x x X1, ,x

and one has

ξ ξ ξ ξ( ) = ( ( )) = [ ( ) − ( )]
ξ∈ ∈ ∈

E f x f x x z x zmin , min , min max , ,
x X

x
x X x X

that is, one has a minmax regret model.
Between these two extreme optimization paradigms, ex-

pected/maximum regret costs, different intermediate optimiza-
tion models can be generated from the framework of the problem
(P) with the objective function (1). These new models could
reflect, in a more suitable way, the specific characteristics of
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