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We consider Bayesian robustness in the context of Bayesian Nonparametrics, and specifical-
ly for the Dirichlet Process prior. We show how to find an optimal procedure, based on 
C-minimax posterior regret (CMPR) for a class of priors C. We consider regret based on 
squared error loss. The neighborhood classes considered are the density ratio (DR) class 
and the epsilon-contamination class.

© 2016 Published by Elsevier Inc.

1. Introduction

1.1. Dirichlet process prior

The Dirichlet Process prior [11,12] and its variants are widely used in Bayesian Nonparametrics. Let X be a real random 
variable. Let α > 0 and P0 a probability measure on the sample space of X . Under the Dirichlet process prior D(αP0), the 
prior distribution of (P (X ∈ B1), . . . P (X ∈ Bk)) for any measurable partition B1, B2, . . . Bk of the sample space, is a Dirichlet 
distribution with parameters (αP0(B1), . . . , αP0(Bk)). As pointed out in Ferguson [11,12], the posterior distribution is also 
Dirichlet.

1.2. Bayesian robustness

The idea of considering uncertainty in the prior distribution was an important part of the statistical philosophy of 
I.J. Good; see for instance Good [13,14]. The work of Berger [3,5] was also influential in the development of Bayesian 
robustness. Berger [5] focuses on sensitivity to the prior, recognizing that in practice, one cannot exactly specify one’s prior. 
The robust Bayesian approach replaces a single prior by a class of priors.

In a parametric Bayesian analysis, where X ∼ f (x|θ), with real θ , to specify the prior π(θ), one has to exactly specify 
a countably infinite number of probabilities P (θ ∈ An). In the BNP (Bayesian Nonparametric) setting with Dirichlet process 
priors, the view point is slightly different. With the Dirichlet process prior, the probability distribution for X can come 
from a large class of distributions, whereas in a parametric Bayes analysis, the probability distribution of X comes from 
within a parametric family f (x|θ). Specifying a single Dirichlet process prior (for real-valued X and the Borel σ -field) 
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means that one (implicitly) specifies exactly the probability distribution for the probabilities P (X ∈ A) for Borel sets A
(or at least for countably infinitely many intervals An). One should be concerned about the robustness of the analysis to 
the choice of the Dirichlet process prior. We will study robustness of the analysis via the range of posterior expectations 
of parametric functions of interest as the prior varies over a class of priors. Related work on robustness with classes of 
Dirichlet Process (DP) priors has been done in Ruggeri [18–20] and Benavoli et al. [2], which we discuss in Section 2. Walley 
[22] discusses imprecision in probabilities, including the concept of “near-ignorance priors”. Walley’s work appears to have 
influenced many subsequent works, including those of Ruggeri [18,19] and Benavoli et al. [2], cited above. Somewhat related 
is Section 5.3 of Walley [22], where he discusses an imprecise Beta model.

Arguments against the need for robustness studies. The argument is sometimes made that nonparametric Bayesian analyses 
have a built-in robustness, since unlike parametric situations, the prior chooses a distribution from an infinite-dimensional 
class. In particular, for the Dirichlet process prior, the distribution of X is discrete with probability one. Since one can 
approximate any measure on the Borel subsets of the real line by a discrete measure, a BNP analysis has a special flexibility, 
and for a large sample of data, one can come close to the true process generating the data. (In other words, the argument is 
in part, that one is not limited to ‘parametric’ probability measures from a family with density f (x|θ).) We point out that, 
in a nonparametric Bayesian analysis, concerns could well remain about samples that are not large.

Another argument is that a subjective Bayesian may argue that her prior distribution represents her belief and thus there 
is no need to worry about robustness with respect to the prior. However, many Bayesian analyses are done with a prior 
that is convenient, rather than based on a careful and deep consideration of one’s prior belief. Presumably, the convenience 
of DPPs (Dirichlet Process Priors) has contributed to their widespread use.

Various approaches to robustness. A popular approach has been to study limiting behavior as one gets more data, and prove 
posterior consistency under suitable conditions. In the ‘parametric’ Bayesian setting, Kadane and Chuang [16] discussed the 
concept of “stability”. The essential idea is that “small” changes in the inputs of a decision problem result in a “small” 
difference in the optimal risk. Ghoshal [15] reviews posterior asymptotics for the Dirichlet process and related priors, and 
presents some posterior consistency results.

Another approach, in parametric Bayes, has been to search for inherently robust priors. Berger [6] points out that there 
is some evidence that flat-tailed priors are inherently robust. While this is interesting, we take a different approach. Recog-
nizing that it is very difficult, arguably unrealistic to specify one’s prior exactly, we consider a class of prior distributions.

There is a substantial literature on Bayesian robustness with respect to variations in the prior. Much of this literature is 
concerned with finding the range of posterior expectation of parametric functions as the prior varies over a class of prior 
distributions. Common examples of parametric functions of interest are the posterior mean and posterior probabilities. The 
review paper of Berger [5] discusses the central role of ranges of posterior expectations in Bayesian robustness investigations. 
If the range of posterior expectations of parametric function(s) of interest is (are) small, one has robustness. However, one 
may be interested in the optimal decision rule, taking into account the uncertainty about π , i.e. based on only knowing that 
π ∈ C . The essence of our approach in this paper is to make use of the range of posterior expectations to find a procedure 
that is the most robust according to a criterion, namely minimax posterior regret.

C-Minimax posterior regret. For a given loss function, the minimax decision is a popular choice. It has the best worst-case 
performance, and is thus appealing. However, under fairly general conditions, the minimax rule is also maximin in the sense 
that it is achieved for the case where one has worst best-case performance. Essentially, one ends up in the case where one 
is guaranteed the largest possible (minimum) loss. As an alternative to minimax risk estimators one may prefer the use of 
minimax posterior regret estimators.

To understand posterior regret, consider a Bayesian setting where the prior π ∈ C . The regret of a decision δ, for a given 
prior π is the additional expected loss incurred with δ compared to the Bayes decision δπ for that π . The idea is that one 
is certain to incur PEL (posterior expected loss) at least Eπ [L(θ, δπ )|x]. How much additional PEL does one incur by using δ
instead of δπ ? That additional amount, Eπ [L(θ, δ)|x] − Eπ [L(θ, δπ )|x], is the posterior regret. (This is akin to the concept of 
opportunity cost or expected opportunity loss in Economics.)

For squared error loss, L(θ, a) = (θ − a)2, it is well known that the Bayes decision is the posterior expectation of θ , i.e. 
δπ (x) = Eπ (θ |x). Therefore the minimum PEL (posterior expected loss) under prior π is the PEL of δπ , which equals

Eπ [(θ − Eπ (θ |x))2|x] = V arπ (θ |x),
the posterior variance of θ under prior π .

For a decision rule δ, the posterior regret under π is the additional posterior expected loss or additional posterior risk 
incurred by using δ in place of δπ , the latter being the Bayes rule under π . This equals Eπ [(θ −δ(x))2|x] − Eπ [(θ −δπ (x))2|x], 
which reduces to

[δ(x) − Eπ (θ |x)]2 (1)

Parametric function ψ(θ). A similar result holds for a real-valued parametric function ψ(θ). If one has squared error 
(relative to ψ(θ)) loss function (ψ(θ) − a)2, the posterior regret of δ under π equals

[δ(x) − Eπ (ψ(θ)|x)]2 (2)
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