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a b s t r a c t 

In classic robust optimization, it is assumed that a set of possible parameter realizations, the uncertainty 

set, is modeled in a previous step and part of the input. As recent work has shown, finding the most 

suitable uncertainty set is in itself already a difficult task. We consider robust problems where the uncer- 

tainty set is not completely defined. Only the shape is known, but not its size. Such a setting is known 

as variable-sized uncertainty. 

In this paper, we present an approach how to find a single robust solution, that performs well on av- 

erage over all possible uncertainty set sizes. We demonstrate that this approach can be solved efficiently 

for min–max robust optimization, but is more involved in the case of min–max regret, where positive 

and negative complexity results for the selection problem, the minimum spanning tree problem, and the 

shortest path problem are provided. We introduce an iterative solution procedure, and evaluate its per- 

formance in an experimental comparison. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Classic optimization settings assume that the problem data are 

known exactly. Robust optimization, like stochastic optimization, 

instead assumes some degree of uncertainty in the problem formu- 

lation. Based on the seminal papers ( Ben-Tal & Nemirovski, 1998, 

20 0 0, 20 02 ), most approaches in robust optimization formalize 

this uncertainty by assuming that all uncertain parameters ξ are 

described by a set of possible outcomes U , the uncertainty set. 

For general overviews on robust optimization, we refer to Ben- 

Tal, Ghaoui, and Nemirovski (2009) , Bertsimas, Brown, and Cara- 

manis (2011) , and Gabrel, Murat, and Thiele (2014) . Other surveys 

focus on robust combinatorial optimization ( Aissi, Bazgan, & Van- 

derpooten, 2009; Kasperski & Zieli ́nski, 2016 ), algorithmic devel- 

opments ( Goerigk & Schöbel, 2016 ) or present tutorials to the field 

( Chassein & Goerigk, 2016; Gorissen, Yanıko ̆glu, & Hertog, 2015 ). 

While the discussion of properties of the robust problem for 

different types of uncertainty sets U has always played a major 

role in the research community, only recently the data-driven de- 
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sign of useful sets U has become a focus of research. In Bertsimas, 

Gupta, and Kallus (2013) , the authors discuss the design of U tak- 

ing problem tractability and probabilistic guarantees of feasibility 

into account. Bertsimas and Brown (2009) discuss the relation- 

ship between risk measures and uncertainty sets, and Yanıko ̆glu 

and Hertog (2012) constructs uncertainty sets by data-driven 

approximations of ambiguous chance constraints. 

In distributionally robust optimization, one assumes that a 

probability distribution on the data is roughly known; however, 

this distribution itself is subject to an uncertainty set U of pos- 

sible outcomes (see Ben-Tal, Hertog, de Waegenaer, Melenberg, & 

Rennen, 2013; Goh & Sim, 2010; Wiesemann, Kuhn, & Sim, 2014 ). 

Another related approach is the globalized robust counterpart, 

see Ben-Tal et al. (2009) . The idea of this approach is that a relaxed 

feasibility should be maintained, even if a scenario occurs that is 

not specified in the uncertainty set. The larger the distance of ξ to 

U , the further relaxed becomes the feasibility requirement of the 

robust solution. 

In this paper, we present an alternative to constructing a spe- 

cific uncertainty set U . Instead, we only assume knowledge of a 

nominal (undisturbed) scenario, and consider a set of possible un- 

certainty sets of varying size based on this scenario. That is, a de- 

cision maker does not need to determine the size of uncertainty, 

but only its shape. Our goal is to construct a solution for which 

the worst-case objective with respect to any possible uncertainty 

https://doi.org/10.1016/j.ejor.2018.01.056 

0377-2217/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.ejor.2018.01.056
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.01.056&domain=pdf
mailto:chassein@mathematik.uni-kl.de
mailto:m.goerigk@lancaster.ac.uk
https://doi.org/10.1016/j.ejor.2018.01.056


A. Chassein, M. Goerigk / European Journal of Operational Research 269 (2018) 544–555 545 

set performs well on average over all uncertainty sets parameter- 

ized this way. 

The general idea of variable-sized uncertainty that this paper 

is based upon was recently introduced in Chassein and Goerigk 

(2018) . There, the aim is to construct a set of robust candidate so- 

lutions that requires the decision maker to chose one that suits 

him best. This is inspired by parametric optimization, where one 

traces the change in the optimal solution while problem parame- 

ters vary. In our setting, we consider all uncertainty sizes simulta- 

neously, and generate a single solution as a compromise approach 

to the unknown uncertainty. It can hence be regarded as a goal 

programming approach for variable-sized uncertainty. We call this 

setting the compromise approach to variable-sized uncertainty . 

We focus on combinatorial optimization problems with uncer- 

tainty in the objective function, and consider both min–max and 

min–max regret robustness (see Kasperski & Zieli ́nski, 2016 ). 

This paper is structured as follows. In Section 2 , we briefly for- 

malize the setting of variable-sized uncertainty. We then introduce 

our new compromise approach for min–max regret robustness in 

Section 3 . We present complexity results for the selection prob- 

lem, the minimum spanning tree problem, and the shortest path 

problem in Section 4 , before discussing the case of min–max ro- 

bustness in Section 3 . In Section 6 , we evaluate our approach in a 

computation experiment, and conclude this paper in Section 7 . 

2. Variable-sized uncertainty 

In the following, we use the notation [ n ] := { 1 , . . . , n } and write 

vectors and matrices in bold, e.g., x x x = (x i ) i ∈ [ n ] . We briefly sum- 

marize the setting of Chassein and Goerigk (2018) , where the 

term “variable-sized uncertainty” was coined. Consider an uncer- 

tain combinatorial problem of the form 

min { c c c x x x : x x x ∈ X } (P(c)) 

with X ⊆ { 0 , 1 } n , and an uncertainty set U(λ) ⊆ R 

n + that is param- 

eterized by some value λ∈ �. For example, 

• interval-based uncertainty U(λ) = 

∏ 

i ∈ [ n ] [(1 − λ) ̂ c i , (1 + λ) ̂ c i ] 

with �⊆[0,1], 
• general interval-based uncertainty U(λ) = 

∏ 

i ∈ [ n ] [ ̂ c i − λd i , ̂  c i + 

λd i ] with d d d ∈ R 

n + , or 
• ellipsoidal uncertainty U(λ) = { c c c : c c c = ̂

 c c c + C C C ξξξ , ‖ ξξξ‖ 2 ≤ λ} with 

� ⊆ R + , C C C ∈ R 

n ×m , ξξξ ∈ R 

m . 

We call ˆ c c c the nominal scenario , and any ˆ x x x ∈ X that is a mini- 

mizer of P( ̂ c c c ) a nominal solution . 

In their setting of variable-sized uncertainty, the aim is to find a 

minimal set of solutions S ⊆ X that contains an optimal solution to 

each robust problem over all λ. Here, the robust problem is either 

given by the min–max counterpart 

min 

x x x ∈X 
max 

c c c ∈U(λ) 
c c c x x x 

or the min–max regret counterpart 

min 

x x x ∈X 
max 

c c c ∈U(λ) 

(
c c c x x x − min 

y y y ∈X 
c c c y y y 

)
. 

In the case of min–max robustness, such a set can be found 

through methods from multi-objective optimization in O(|S| · T ) , 

where T denotes the complexity of the nominal problem, for 

many reasonable uncertainty sets. However, S may be exponen- 

tially large. 

This setting is related to two other approaches from the op- 

timization literature. The first is fuzzy optimization, which draws 

on possibility distributions to describe the problem uncertainty. A 

fuzzy set ˜ A consists of a reference set � and a membership func- 

tion μ ˜ A 
: � → [0 , 1] . The value of the membership function can be 

interpreted as the degree of membership of an element in 

˜ A . A 

λ-cut is then defined as all elements with membership at least λ, 

i.e., the set ˜ A 

λ = { v ∈ � : μ ˜ A 
(v ) ≥ λ} . The λ-cut with λ = 1 is called 

the core of a fuzzy set. For details on possibility theory we refer 

to Dubois and Prade (1988) ; its relationship to min–max regret is 

discussed in Kasperski and Zieli ́nski (2010) . In variable-sized un- 

certainty, one may consider the uncertainty set U as being fuzzy. 

The set 
∏ 

i ∈ [ n ] [ ̂ c i , ̂  c i ] is then the core of the uncertainty, and each 

set U(λ) corresponds to a λ-cut in possibility theory. More general 

ways to model possibility distributions exist, which may constitute 

an interesting way to extend variable-sized uncertainty in the fu- 

ture. 

The second related approach is parametric optimization. In this 

setting, one considers a family of optimization problems that are 

parameterized through some value λ. The general goal is to com- 

pute regions where the optimal solution does not change, meaning 

that all possible problems with respect to λ are solved simultane- 

ously. Variable-sized uncertainty can be seen as a parametric prob- 

lem, where the parameter defines the uncertainty set. We refer to 

Witting, Ober-Blöbaum, and Dellnitz (2013) for a discussion of ro- 

bustness and parametric (multi-objective) optimization. 

The drawback of variable-sized uncertainty is that the solution 

set S may be of exponential size, which would require some pro- 

cessing of solutions before they can be presented to the decision 

maker. The idea of our compromise approach is to present only 

one solution with a good overall performance instead. Further- 

more, this solution is not necessarily in S, which means that the 

previous approach might not be able to find it. We introduce our 

new approach in the following section. 

3. Compromise solutions in the min–max regret model 

In this paper, we are interested in finding one single solution 

that performs well on average over all possible uncertainty sizes 

λ∈ �. Recall that in classic min–max regret, one considers the 

problem 

min 

x x x ∈X 
max 

c c c ∈U(λ) 
c c c x x x − opt( c c c ) 

with opt( c c c ) = min y y y ∈X c c c y y y . We define the compromise approach to 

variable-sized uncertainty as the following problem: 

min v al ( x x x ) with v al ( x x x ) = 

∫ 
�

(
max 

c c c ∈U(λ) 
c c c x x x − opt( c c c ) 

)
dλ

(CMMR) 

In the following, we focus our analysis on the classic interval 

uncertainty sets U(λ) = 

∏ 

i ∈ [ n ] [(1 − λ) ̂ c i , (1 + λ) ̂ c i ] . To simplify the 

presentation, we further assume � = [0 , 1] . The previous work on 

variable-sized uncertainty aims at presenting the decision maker 

with a set of solutions, and assumes that the decision maker will 

then choose the solution that suits his requirements best. Not pre- 

senting a single solution but a set of solution respectively a proba- 

bility distribution of solutions was also proposed in Mastin, Jaillet, 

and Chin (2015) . There the authors introduce the concept of ran- 

domized min–max regret in which the goal is to find a probability 

distribution over solutions such that the expected maximum regret 

is minimal. Note that in this concept the uncertainty set size is as- 

sumed to be fixed. 

In contrast, the concept of compromise min–max regret pro- 

duces only a single solution that represents a good overall trade-off

for all uncertainty set sizes. More precise, the compromise min–

max regret solution minimizes the average of the maximum regret 

over all considered uncertainty set sizes. It can therefore be seen in 

the tradition of goal programming for multi-objective optimization. 

As a motivation for our approach, consider the example shown in 

Fig. 1 . 
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