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Endangered species often exhibit low or negative intrinsic growth rates and experience random environmental
shocks that can significantly affect population abundance. Geometric Brownian motion has been shown to be a
valid model for an endangered species (Dennis et al. 1991). This paper argues that an endangered species should
be viewed as a quasi-public good and shows how real option theory can be used to determine the optimal timing
of a conservation intervention that might prevent extinction. When a species goes extinct we assume society
incurs a biodiversity loss, that can be measured in dollars. Regret is the interest cost on that loss. Social anxiety
increases toward regret as the population of an endangered species declines toward extinction. The complete
model requires information on (1) the drift and standard deviation rates before and after the conservation
intervention, (2) the social cost (anxiety) from endangerment, (3) the fixed and variable costs of the conservation
intervention, and (4) the social rate of discount. The model is illustrated with data on the captive breeding
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program for the California condor.

1. Introduction

The term “anthropocene” has been proposed as a name for our
current geological epoch where human activity is changing climate and
altering ecosystems. A consequence of this impact has been an accel-
eration in the rate of extinction of indigenous flora and fauna in ter-
restrial, aquatic, and marine ecosystems. Kolbert (2014) refers to this
acceleration as the “sixth extinction,” and after reviewing the scientific
literature predicts that 20% to 50% of the currently existing plant and
animal species will be extinct by the end of the 21st century.

Weisbrod (1964) viewed the provision of certain “quasi-public
goods” (for example, parks and hospitals) as not only providing benefits
to the users of those goods, but also providing option value to current
nonusers who may want or need the services of those goods in the fu-
ture. Weisbrod's insight led to a series of articles seeking to refine the
nature of option value as it related to irreversible development, as in
Arrow and Fisher (1974), and the expected value of information when
making irreversible decisions that pose a risk of future environmental
damage, as in Conrad (1980).

Should an endangered species be regarded as a quasi-public good?
Pure public goods are typically characterized as being “non-rival and
non-exclusionary” in their provision of social benefit. An endangered
species can provide at least two benefit flows. The first is through
wildlife observation. The benefit of observation today can be limited to
individuals who pay an admission fee to a park or tour a operator and
can be exclusionary. The second benefit flow is existence value, the
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positive utility obtained by individuals who are unable or unlikely to
observe an endangered species in the wild, but who want to preserve
the option of observation (in the wild) for future generations. Existence
benefits are non-rival and non-exclusionary, similar to a pure public
good. Because one benefit flow (observation today) can be exclusive,
but the other benefit flow (existence value) is non-rival and non-ex-
clusionary, we argue that an endangered species should be viewed as a
quasi-public good.

Consider the North Atlantic right whale and the black rhino, both
critically endangered species. The remaining population of the North
Atlantic right whale (Eubalaena glacialis) is estimated to be about 400
individuals. Observation is exclusive to those willing to pay the price of
a whale-watching tour, but the existence value from actions and po-
licies to reduce right-whale mortality from ship strike are non-exclu-
sionary and shared among all humans concerned about right whale
survival.

The black rhino (Dicero bicornis) is found in southern Africa and is
the target of international poaching syndicates. The remaining popu-
lation, estimated to be around 2300 individuals, is distributed across
both national parks and private game preserves. Observation of the
black rhino is restricted by entrance fees, but the existence value from
increases in rhino abundance resulting from anti-poaching patrols is
both non-rival and non-exclusionary.

The literature on the economics of endangered species is relatively
sparse. Weitzman (1992, 1993) developed a theory of diversity and
applied it to the conservation of the 15 extant species of crane, many of
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which were endangered. Weitzman's theory of diversity was based on
the genetic distance between a species and its next closest living re-
lative, as portrayed in a maximum-likelihood, taxonomic tree. The di-
versity value of a species was determined by its genetic proximity to
other extant species within its clade (its branch in the taxonomic tree)
and the probability of extinction faced by both that species and its
closest living relative. An endangered species that was genetically close
to an abundant species (with a low probability of extinction) was less
valuable than an endangered species with no close relative and whose
extinction would result in the irreversible loss of an entire clade.

Perhaps the closest “relative” to this paper is Ben Abdallah and
Lasserre (2012) who take a real option approach to the use of habitat
critical to the survival of an endangered species. They specifically
consider a commercial activity, logging, which adversely affects the
habitat for caribou, an endangered species in Central Labrador, Canada.
Their model builds on the important paper by Dixit (1989) which
identified critical price triggers for the entry or exit of a firm into an
industry. Now, the habitat needed for survival of the endangered spe-
cies evolves stochastically, declining in expectation when logging is
allowed, but increasing in expectation when logging is banned. Instead
of price triggers that determine the entry and exit of a firm in an in-
dustry, habitat triggers (perhaps measured by the area of suitable
forest) determine when it is optimal to allow logging and when logging
should be banned. The optimal habitat triggers depend on the para-
meters of two mean-reverting processes that govern the evolution of
habitat (with and without logging), the social value of the endangered
species, the net revenue from logging, and the social rate of discount.
The model also allows one to compute the expected length of time when
logging would be allowed and the expected length of time when logging
would be banned.

The current paper differs from Ben Abdallah and Lasserre (2012)
and previous work in ecology in that it introduces an “anxiety” function
that measures society's concern over the declining abundance of a
single endangered species. As abundance declines, anxiety grows. An-
xiety is a social cost. Extinction, if and when it occurs, results in “regret”
at each instant for the rest of time. Introducing anxiety and regret into a
model where the dynamics of an endangered species can be approxi-
mated by geometric Brownian motion (as in Dennis et al., 1991) allows
one to determine the optimal population size when a conservation in-
tervention, say captive breeding, should be undertaken. The interven-
tion has the ability to alter the mean drift and standard deviation rates
of the stochastic process determining the abundance of the endangered
species. Increasing the intrinsic growth rate or reducing the standard
deviation rate will increase the modal time to extinction. Captive
breeding programs or other conservation interventions are costly, and
the optimal population size that triggers intervention will depend on
the mean drift and standard deviation rates, both before and after in-
tervention, the anxiety function, the cost of intervention, and the social
rate of discount. The key research question becomes “What is the po-
pulation level that triggers a costly conservation intervention which
might prevent the extinction of an endangered species?”

The rest of this paper is organized as follows. In the next section we
review extinction metrics when the abundance of an endangered spe-
cies evolves according to geometric Brownian motion (GBM). In
Section 3, we introduce our anxiety function, derive its properties as the
abundance of an endangered species declines, and posit the existence of
regret if the species goes extinct. In Section 4 we develop the real option
model which allows one to determine the critical level of abundance
when a costly conservation intervention should be undertaken.

In Section 5, we apply our real option model to historical data for
the California condor (Gymnogyps californianus). The remnant wild
population of California condors, which had declined to 22 individuals,
was captured in 1987 and transported to zoos in San Diego and Los
Angeles where captive breeding programs had previously been estab-
lished, in 1984. The success of the captive breeding program allowed
the reintroduction of eight captive-reared condors in southern
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California in 1992. Since then, the California condor has been suc-
cessfully reintroduced at the north rim of the Grand Canyon in Arizona,
the Baja Peninsula in Mexico, and the Pinnacles National Park and the
Big Sur, both in central California. Section 6 concludes with a discus-
sion of conservation options when there are multiple, but isolated,
meta-populations of an endangered species.

2. Geometric Brownian Motion as a Model for the Dynamics of an
Endangered Species

Dennis et al. (1991) view extinction as a chance event. At low po-
pulation levels, a random environmental shock that reduces survival
might be sufficient to induce species extinction. Starting from a low
level, the stochastic evolution of species abundance is unlikely to ex-
hibit the compensatory effect of carrying capacity, which at higher le-
vels of abundance might reduce the proportional growth rate. Let N = N
(t) denote the population abundance of an endangered species at instant
t. The model of logistic growth, where dN/dt = N = rN(1 — N/K), has
parameters r > 0, the intrinsic growth rate, and K > 0, the environ-
mental carrying capacity. The proportional rate of growth is defined as
N/N = r(1 — N/K). When N is positive but small relative to K, so that
N/K = 0, N/N = r, while as N — K, N/N — 0. For an endangered
species, far below current carrying capacity, but subject to random
environmental shocks that affect survival, GBM where

dN = rNdt + oNdz (@)

can provide a good first-order approximation to population dynamics as
also discussed by Lande and Orzack (1988). In Eq. (1), r is once again
the intrinsic growth rate, which for an endangered species might be
negative, o > 0 is called the standard deviation rate, and dz = e()Vdr
is the increment of a Wiener process where ¢(t) is a standard normal
random variate. N(t) will be log-normally distributed with an expected
value at t>0 of E[N()]=N(0)" and a variance of
V[N ()] = N(0)2%¥(e°t — 1).

If we define x = x(t) = InN(t), where In(+) is the natural log op-
erator, then It6’s Lemma implies

dx = (r — 02/2)dt + odz 2)

and x(t) will be normally distributed with E [x(¢)] = x(0) + ut and a
variance V[x(t)] = o%, where u=r— ¢°/2. Tuljapurkar (1989) has
shown that Eq. (2) can provide a good statistical approximation to the
behavior of the stochastic Lewis-Leslie model when age-specific fe-
cundity and survival rates are drawn from independent multivariate
distributions.

The normal distribution for x = x(t), with the variance increasing
linearly in time, implies that x could potentially cross any lower
threshold, x,, starting from xo = x(0) > 0. If N(t) = 1 implies extinction,
then x,=In(1)=0 can be regarded as the extinction threshold.
Denoting x4 = x(0) — x, as the current distance from the extinction
threshold, Lande and Orzack (1988) show that the probability that x(t)
will reach x, is given by

1, ifu<o
e—z;xxd/az

2 =
7 (xg, 4, 0°) { >0 @

Conditional on all sample paths (realizations) that reach the ex-
tinction threshold, the amount of time, 7z, before the threshold is first
reached (first-passage time) is a positive, real-valued, random variable
with a cumulative distribution that can be written in terms of the cu-
mulative normal distribution and is given by

—Xq + lult

ot

Prit < t] = G(t; xg, 4, 02) = CID( )(1 + eZalllo®) 0 < t < co.

4
where ®(*) is the normal cumulative distribution function (cdf). The
probability density function (pdf) of this distribution is given by 0G(+)/t
and takes the form
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