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A B S T R A C T

The current society requires solutions for many problems in safety, economy, and health. The social concerns on
the high rate of repetitive strain injury, work-related osteomuscular disturbances, and domestic issues involving
the elderly and handicapped are some examples. Therefore, studies on complex machines with structures
similar to humans, known as humanoids robots, as well as emerging optimization metaheuristics have been
increasing. The combination of these technologies may result in robust, safe, reliable, and flexible machines that
can substitute humans in multiple tasks. In order to contribute to this topic, the static modeling of a humanoid
robot and the optimization of its static force capability through a modified self-adaptive differential evolution
(MSaDE) approach is proposed and evaluated in this study. Unlike the original SaDE, MSaDE employs a new
combination of strategies and an adaptive scaling factor mechanism. In order to verify the effectiveness of the
proposed MSaDE, a series of controlled experiments are performed. Moreover, some statistical tests are applied,
an analysis of the results is carried out, and a comparative study of the MSaDE performance with other
metaheuristics is presented. The results show that the proposed MSaDE is robust, and its performance is better
than other powerful algorithms in the literature when applied to a humanoid robot model for the pushing and
pulling tasks.

1. Introduction

A humanoid robot can be seen as a complex redundant manipulator
that contains upper and lower limbs and a base located at the feet. In
order to achieve a humanoid robot that is capable of operating in
everyday life environments, a dynamically stable and efficient motion is
required. The research on humanoid robots has been a worldwide topic
in the past decades by virtue of the continuous improvement in both
hardware and software.

The development of robots that could replicate human movements
is a relevant topic in scientific research and industrial development and
could be useful for numerous applications in the real world: the world
stage of ergonomic and musculoskeletal disorders can be reduced by
replacing humans with machines. First, the elderly may live safely and
in a more comfortable way with assistance of humanoid robots (see
comments in [1–3]). In addition, unsafe and unhealthy works (in
general) can be avoided by humans by employing humanoid robots.
Furthermore, humanoid robots can also provide assistance to people

with some kind of physical incapacity [4]. Humanoid robots are
expected to play an important role in assisting human activities
because of their flexibility and friendly appearance. Therefore, the
topic about humanoid robots is one of the most important and
challenging in the field of robotics.

Worldwide, there are a number of humanoid robots that have been
recently built such as the prototypes HRP-2W [5], Honda [6], WABIAN
[7], Bonten–Maru [8], Johnnie [9], and HanSaRam [10]. However,
there are few studies such as [11] that deal with the static force
capability of these machines, which is necessary to estimate the limits
supported by the mechanism and ensure the accomplishment of a
particular task, specifically in high load situations. In case of humanoid
robots as the model optimized in [12,13] (see Section 2 for details),
with kinematics and actuation redundancy, the equations that define
the force capability are nonconvex and nonlinear. For a humanoid,
there are four equivalent solutions (multimodality) by only reversing
the positioning of the left and right limbs. Taking into account the
gravitational forces, the complexity increases and thus obtaining the

http://dx.doi.org/10.1016/j.cor.2016.10.011
Received 7 November 2015; Received in revised form 20 October 2016; Accepted 24 October 2016

⁎ Corresponding author at: Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Parana (PUCPR), Curitiba, PR, Brazil.
E-mail addresses: juliano.pierezan@ufpr.br (J. Pierezan), roberto.freire@pucpr.br (R.Z. Freire), lucas.weihmann@ufsc.br (L. Weihmann),

g.reynosomeza@pucpr.br (G. Reynoso-Meza), leandro.coelho@pucpr.br (L. dos Santos Coelho).

Computers & Operations Research xx (xxxx) xxxx–xxxx

0305-0548/ © 2016 Elsevier Ltd. All rights reserved.
Available online xxxx

Please cite this article as: Pierezan, J., Computers & Operations Research (2016), http://dx.doi.org/10.1016/j.cor.2016.10.011

http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.10.011
http://dx.doi.org/10.1016/j.cor.2016.10.011
http://dx.doi.org/10.1016/j.cor.2016.10.011


robot’s force capability becomes a global optimization problem [11–
13].

Global optimization problems frequently arise in almost every field
of engineering design and other scientific applications. Optimization
metaheuristics related to evolutionary algorithms allow designers to
tackle global optimization problems by iteratively trying to improve a
candidate solution population with regard to a given measure of
quality. Although optimization metaheuristics do not guarantee a
convergence, they are still capable of detecting quality solutions that
can be of interest to users. Moreover, the combination of optimization
metaheuristics and robotics has shown satisfactory results in most
diverse applications [14–16], including the humanoid robots
[12,13,17]. This is the reason why many researchers have employed
metaheuristics such as genetic algorithms (GA), differential evolution
(DE), and particle swarm optimization (PSO), among others, for
robotic optimization problems. In fact, the DE has outperformed other
multiple metaheuristics in optimization competitions and robotic
applications [13,18–20].

In the last decade, the DE has emerged as an efficient and powerful
population-based stochastic search approach for real-valued functions.
Because of its performance when applied to numerous constraints and
large-scale real-world problems, it is evident that this technique is
flexible and efficient enough to be chosen instead of other state-of-the-
art algorithms [20]. Its advantages are its simple structure, ease of use,
and execution speed. In addition, the DE algorithm is found to be
robust and able to provide the same results consistently over several
trials [19,21].

In the classical DE used for solving optimization problems, the
control parameters and mutation strategies are user-specified and kept
fixed during the run. However, recent studies indicate that the
performance of the DE is very sensitive to the parameter setting and
the choice of the best control parameters is dependent on the
optimization problem. Therefore, it is not always an easy task to adjust
these parameters [21]. The choice of control parameters (i.e., mutation
control parameter, F, crossover control parameter, CR, and population
size, NP) and mutation strategies directly affect the convergence
performance of the DE in satisfying the evolution requirement and
balancing its exploitation ability of the previous experience and global
exploration of the search space in the evolutionary process. For details,
the readers can refer to the three surveys of DE in [18–20], and the
references therein.

Some research studies propose adaptation schemes during the
search process of the DE in order to accelerate its convergence.
These adaptive DE variants have shown promising results in the DE
literature. Examples given are the DE [22], self-adaptive differential
evolution [23,24], self-adaptive DE with neighborhood search [25],
generalized adaptive DE [26], composite DE [27], adaptive DE with
optional archive (JADE) [28], ensemble of mutation strategies and
control parameters in DE [29], success-history based adaptive DE [30],
DE with self-adaptive population resizing mechanism [31], self-adap-
tive DE [21], PM-AdapSS-DE (probability matching-based adaptive
strategy selection) [32], generalized adaptive DE (GaDE) [33], DE with
fitness-based area-under-curve bandit (F-AUC-Bandit) [34], among
others.

Qin et al. [23] developed a self-adaptive DE (SaDE) algorithm for
the constrained real-parameter optimization, in which both the trial
vector generation strategies and associated control parameter values
were gradually self-adapted according to the learning experiences.
Moreover, it introduces probabilities to adjust the mutation parameter
(or scaling factor) and crossover rate. Later, the authors extended the
SaDE algorithm to solve unconstrained optimization problems [35],
and further experiments demonstrated that the SaDE algorithm out-
performs the conventional DE and several state-of-the-art metaheur-
istics [24]. Nevertheless, this algorithm can still be improved, and
therefore, the proposed DE approach presented in this study can be
viewed as a modified variant of the SaDE [24], referred to as MSaDE,

for short.
In the SaDE, four different strategies (combining mutation and

crossover) are employed; the mutation control parameter is generated
by a normal distribution with both the mean value and standard
deviation constant (0.5 and 0.3, respectively), and the crossover rate is
generated by a normal distribution with constant standard deviation
(0.1) and adaptive mean value. The MSaDE keeps the SaDE main
structure; however, the strategy “DE/current-to-rand/1” has been
replaced by the one called “DE/current-to-gr_best/1,” which has been
proposed in [36], and has shown excellent performance when com-
pared with the original DE algorithm, SaDE, JADE and others. In order
to improve both exploration and exploitation ability, the scaling factor
has been modified to become an adaptive mechanism based on the
succeeded trials. Furthermore, the crossover rate and the scaling factor
are generated by Cauchy distribution [28], which presents less
dispersed values compared with the normal distribution of probability.

The remainder of this paper is organized as follows. Section 2
describes the humanoid model, its features, and the optimization
problem design. Section 3 presents the framework of the DE and
SaDE and the proposed modified version of the SaDE algorithm
(MSaDE). Next, Section 4 contains the experimental results and their
analysis. Finally, Section 5 presents some concluding remarks and
suggestions for further research.

2. Humanoid robot model and the optimization problem

Simulating the behavior of a humanoid robot is fundamental in
several real-world applications. An effective simulation of the huma-
noid robot and the possibility to predict the contact forces that the
robot will develop with external-world objects is crucial to establish the
effectiveness of the robot control system in order to prevent the robot
to compromise its own integrity and to test the safety of the human–
robot interaction [17]. This section describes the physical character-
istics, kinematics, and static balance of the humanoid robot presented
in this study.

2.1. Mechanical characteristics

The humanoid robot adopted in this research [4] contains twelve
revolute joints, each with one degree of freedom and nine links, as
shown in Fig. 1. The limbs (arms and legs) are composed of three joints
and two links, and the trunk connects all the limbs. The robot’s neck
and head are drawn only for representation.

The physical characteristics of the motors that compose the robot
determine the maximum torque that each joint supports. Moreover, the
links have predefined weights and lengths and it is supposed that the
links can support any load (in a structural meaning). The joint and link
features are shown in Table 1, where the units are written generically.
Furthermore, it is assumed that the joints in contact with the
environment (ankles and fists) cannot produce any torque.

Fig. 1. Humanoid model.
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