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a b s t r a c t

We analytically study proximity and distance properties of var-
ious kernels and similarity measures on graphs. This helps to
understand the mathematical nature of such measures and can
potentially be useful for recommending the adoption of specific
similarity measures in data analysis.
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1. Introduction

Until the 1960s, mathematicians studied only one distance for graph vertices, the shortest path
distance [6]. In 1967, Gerald Sharpe proposed the electric distance [42]; then it was rediscovered
several times. For some collection of graph distances, we refer to [19, Chapter 15].

Distances1 are treated as dissimilarity measures. In contrast, similarity measures are maximized
when every distance is equal to zero, i.e., when two arguments of the function coincide. At the same
time, there is a close relation between distances and certain classes of similarity measures.

One of such classes consists of functions defined with the help of kernels on graphs, i.e., positive
semidefinite matrices with indices corresponding to the nodes. Every kernel is the Gram matrix of
some set of vectors in a Euclidean space, and Schoenberg’s theorem [40,41] shows how it can be
transformed into the matrix of Euclidean distances between these vectors.
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1 In this paper, the term distance is used as a synonym of metric, i.e., every distance satisfies nonnegativity, symmetry, the
identity of indiscernibles, and the triangle inequality.

https://doi.org/10.1016/j.ejc.2018.02.002
0195-6698/© 2018 Published by Elsevier Ltd.

https://doi.org/10.1016/j.ejc.2018.02.002
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:k.avrachenkov@inria.fr
mailto:upi@ipu.ru
mailto:dmytro.rubanov@inria.fr
https://doi.org/10.1016/j.ejc.2018.02.002


Please cite this article in press as: K. Avrachenkov, et al., Similarities on graphs: Kernels versus proximitymeasures, European
Journal of Combinatorics (2018), https://doi.org/10.1016/j.ejc.2018.02.002.

2 K. Avrachenkov et al. / European Journal of Combinatorics ( ) –

Another class consists of proximity measures characterized by the triangle inequality for prox-
imities. Every proximity measure κ(x, y) generates a distance [15] by means of the d(x, y) =
1
2 (κ(x, x) + κ(y, y)) − κ(x, y) transformation, and for some subclasses of proximity measures, the
inverse transformation can also be specified.

Furthermore, it turns out that many similarity measures are transitional measures [9,11], in
particular, they satisfy the inequality sij sjk ≤ sik sjj and so they can be transformed into proximities by
means of the logarithmic transformation.

Distances and similarity measures on graphs are widely used in data analysis, especially,
in graph-based supervised, semi-supervised, and unsupervised machine learning, see, e.g.,
[1,2,4,5,7,21,25,26,35–37,47] and references therein. In a number of studies including [28,33,45],
comparative ability of various measures to detect communities and predict links has been explored.
However, in such studies, the authors do not focus on the mathematical properties of the measures
under consideration.

The purpose of this paper is to start filling this gap. We consider a number of well-known and
recently proposed similarity measures on graphs (including weighted graphs) defined in terms of
one of the following basic matrices: the weighted adjacency matrix, the Laplacian matrix, and the
(stochastic) Markov matrix. We explore their basic mathematical properties, in particular, we find
out whether they belong to the classes of kernels or proximities and study the properties of distances
related to them. This helps to reveal the nature of such measures and can be considered as a step
towards a mathematical theory of similarity / dissimilarity measures on graphs.

2. Definitions and preliminaries

The weighted adjacency matrix W = (wij) of a weighted undirected graph G with vertex set
V (G) = {1, . . . , n} is the matrix with elements

wij =

{
weight of edge (i, j), if i ∼ j,
0, otherwise.

In what follows, G is connected.
The ordinary (or combinatorial) Laplacian matrix L of G is defined as follows: L = D − W , where

D = Diag(W ·1) is the degree matrix of G, Diag(x) is the diagonal matrix with vector x on the main
diagonal, and 1 = (1, . . . , 1)T . In most cases, the dimension of 1 is clear from the context.

Informally, given a weighted graph G, a similarity measure on the set of its vertices V (G) is a
function κ : V (G) × V (G) → R that characterizes similarity (or affinity, or closeness) between the
vertices of G in a meaningful manner and thus is intuitively and practically adequate for empirical
applications [2,20,25,36].

A kernel on graph is a graph similarity measure that has an inner product representation. All
the inner product matrices (also called Gram matrices) with real entries are symmetric positive
semidefinite matrices. On the other hand, any semidefinite matrix has a representation as a Gram
matrix with respect to the Euclidean inner product [27].

We note that following [34,44] we prefer to write kernel on graph rather than graph kernel, as the
notion of ‘‘graph kernel’’ refers to a kernel between graphs [46].

A proximity measure (or simply proximity) [15] on a set A is a function κ : A×A → R that satisfies
the triangle inequality for proximities, viz.:
For any x, y, z ∈ A, κ(x, y) + κ(x, z) − κ(y, z) ≤ κ(x, x), and if z = y and y ̸= x, then the inequality is
strict.

A proximity κ is aΣ-proximity (Σ ∈ R) if it satisfies the normalization condition:
∑

y∈Aκ(x, y) = Σ

for any x ∈ A.
By setting z = x in the triangle inequality for proximities and using the arbitrariness of x and y

one verifies that any proximity satisfies symmetry: κ(x, y) = κ(y, x) for any x, y ∈ A. Consequently, if
κ(x, y) is a proximity, then −κ(x, y) is a protometric [18,19].

Furthermore, any Σ-proximity has the egocentrism property: κ(x, x) > κ(x, y) for any distinct
x, y ∈ A [15]. If κ(x, y) is represented by a matrix K = (Kxy) = (κ(x, y)), then egocentrism of κ(x, y)
amounts to the strict entrywise diagonal dominance of K .
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