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In research on eye movements in reading, it is common to analyze a number of canonical
dependent measures to study how the effects of a manipulation unfold over time. Although
this gives rise to the well-known multiple comparisons problem, i.e. an inflated probability
that the null hypothesis is incorrectly rejected (Type I error), it is accepted standard prac-
tice not to apply any correction procedures. Instead, there appears to be a widespread
belief that corrections are not necessary because the increase in false positives is too small
to matter. To our knowledge, no formal argument has ever been presented to justify this
assumption. Here, we report a computational investigation of this issue using Monte
Carlo simulations. Our results show that, contrary to conventional wisdom, false positives
are increased to unacceptable levels when no corrections are applied. Our simulations also
show that counter-measures like the Bonferroni correction keep false positives in check
while reducing statistical power only moderately. Hence, there is little reason why such
corrections should not be made a standard requirement. Further, we discuss three statisti-
cal illusions that can arise when statistical power is low, and we show how power can be
improved to prevent these illusions. In sum, our work renders a detailed picture of the var-
ious types of statistical errors than can occur in studies of reading behavior and we provide
concrete guidance about how these errors can be avoided.
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Introduction

A key advantage of using eye-tracking in reading
research is the wealth of the data that can be collected.
The entire sequence of fixations that a participant pro-
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duces during a trial is recorded and, in theory, available
for analysis. In practice, some standard aggregate measures
have been established to adequately summarize this
wealth of data (Rayner, 1998). Most commonly, the analy-
sis region for which these measures are computed will
contain one word or phrase within a longer sentence. Over
the last decades, many different measures have been pro-
posed, but there are a handful of standard measures that
almost every eye-tracking study reports. In order to com-
pute these measures, the fixation sequence is divided into
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the first pass, consisting of the fixations occurring when a
reader first enters a word from the left, and the second
pass, consisting of the fixations occurring when a word is
revisited (see Vasishth, von der Malsburg, & Engelmann,
2013, for a discussion of the distinction between early
and late measures). First pass and second pass fixations
are then filtered and combined to form the standard aggre-
gate measures:

1. First fixation duration (FFD): the duration of the very first
fixation a reader made on a region, regardless of
whether it was refixated thereafter or not.

2. Single fixation duration (SFD): the same as first fixation
duration, but only counting cases where a region was
not refixated during first pass.

3. Gaze duration (GZD): the sum of the durations of the
first fixation and all refixations during first pass, that
is, before the gaze left the word for the first time.

4. Go-past duration (GPD): also known as regression path
duration, the sum of all fixations from when a reader’s
gaze first entered a word from the left, including all
refixations and all regressive fixations to prior words,
until it left the word towards the right.

5. Total viewing time (TVT): the sum of the durations of all
fixations on the word, regardless of whether they
occurred during the first or second pass.

Again, the above list of measures is not exhaustive, but
the five measures described are those most commonly
used. From the description of these measures it should
already be apparent that they are all correlated to varying
degrees. These correlations, combined with the fact that
several of these measures are potentially informative, lead
to a problematic situation.

Let’s assume that a researcher wants to test whether a
certain experimental manipulation has an impact on
reading behavior. They will then compute the condition
means for each measure and, in order to test whether those
means are significantly different, compute a series of ANO-
VAs or linear mixed-effects models, one for each measure.
In the absence of a specific hypothesis about the impact of
the manipulation on the reading process, the simplest and
most commonly used decision strategy is to conclude that
reading is affected by the manipulation if at least one of
these analyses indicates a significant difference in means.
Which measure is affected is not important under this
decision strategy; at best, it might provide some additional
information about the time course of the affected process.

The problem with this decision strategy is the follow-
ing: Assuming that significance is determined using an
alpha threshold of 0.05, each test produces a positive result
with a probability of 5% even if there was no true effect.
Assuming further that four statistically independent eye-
tracking measures are tested, the probability that at least
one of these tests produces a false positive result increases
to 1—0.95% = 0.185. This means that the probability of
finding a false positive result would be 18.5% instead of
the conventionally accepted 5%.

Of course, in reality, eye-tracking measures are not
quite independent as the different fixation time measures

are typically highly correlated. For example, the correlation
between first fixation duration (FFD) and gaze duration
(GZD) is determined by the rate at which readers refixate.
If readers do not refixate at all, FFD and GZD are identical,
in other words, their correlation is 1. The more readers
refixate, the lower becomes the correlation between FFD
and GZD. However, since the fixations that are used to
compute FFD form a subset of those used to compute
GZD, the correlation will typically not reach zero.

The fact that the canonical eye-tracking measures are
correlated implies that the probability of a falsely declared
effect is not quite as high as the 18.5% calculated above. We
suspect that this is one reason for why many reading
researchers draw conclusions as if the false positive rate
had only been 5%. However, whether this simplifying
assumption is warranted or not is unclear. If the correla-
tions between fixation time measures were always 1, mul-
tiple comparisons would indeed not be cause for concern;
all tests would necessarily produce the same result such
that no test beyond the first could possibly produce addi-
tional false positives. However, in that case, analyzing dif-
ferent fixation time measures would be completely
redundant. Eye movement researchers are clearly aware
that different fixation time measures share some informa-
tion, but that each measure also contributes unique infor-
mation. Thus, the true false positive rate in an eye-tracking
study with four dependent measures lies somewhere
between 5% and 18.5%.

If the rate of false positives is inflated to unacceptable
levels due to multiple comparisons, adjustments to the
decision making process are needed. The textbook solution
for that is the Bonferroni correction (Bonferroni, 1936). All
a researcher has to do in order to apply this correction is to
divide the « threshold for determining significance (typi-
cally 0.05) by the number of tests that were performed
and to use the resulting number as the new threshold. In
the present scenario, that means that significance would
be determined using the threshold o = 0.05/4 = 0.0125.
If the threshold is lowered in this way, the probability of
finding at least one false positive result in any of the mul-
tiple statistical tests is 5%. We then say that the family-
wise error rate is controlled, the family being the set of
tested hypotheses: there is an effect in FFD, there is an
effect in GZD, and so on.

Unfortunately, the Bonferroni correction is not entirely
appropriate for analyses of eye-tracking measures because
it assumes that the statistical tests are independent, which,
as we discussed above, they are typically not. The Bonfer-
roni correction may therefore be too conservative, which
means that the false positive rate will be even lower than
5%. While this is not in itself a problem, any reduction of
false positives also comes at the price of reduced statistical
power, i.e. a reduced ability to detect true effects. Hence, it
is desirable to reduce false positives to the conventional 5%
but not more because we would otherwise sacrifice more
statistical power than necessary in order to control the
family-wise error rate.

Concerns about loss of statistical power may therefore be
another reason for why reading researchers do not apply
corrections for multiple comparisons such as the Bonferroni
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