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A B S T R A C T

Ordinal categorical responses are commonly seen in geo-referenced survey data while spatial statistics tools for
modelling such type of outcome are rather limited. The paper extends the local spatial modelling framework to
accommodate ordinal categorical response variables by proposing a Geographically Weighted Ordinal
Regression (GWOR) model. The GWOR model offers a suitable statistical tool to analyse spatial data with ordinal
categorical responses, allowing for the exploration of spatially varying relationships. Based on a geo-referenced
life satisfaction survey data in Beijing, China, the proposed model is employed to explore the socio-spatial
variations of life satisfaction and how air pollution is associated with life satisfaction. We find a negative as-
sociation between air pollution and life satisfaction, which is both statistically significant and spatially varying.
The economic valuation of air pollution results show that residents of Beijing are willing to pay about 2.6% of
their annual income for per unit air pollution abatement, on average.

1. Introduction

Geographically weighted regression (GWR) has been established as
a flexible framework for modelling spatially varying relationships be-
tween predictor variables and an outcome variable (Brunsdon,
Fotheringham, & Charlton, 1996; Fotheringham, Brunsdon, & Charlton,
2003). Recent years have seen active methodological development of
GWR models due to an increasing demand of applying localised spatial
models to data with complex structures and non-Gaussian types of
outcome variables. For instance, GWR models have been extended to
explore spatiotemporal data by incorporating temporal correlations
between an observation at time period t and spatially nearby observa-
tions at previous periods into the overall local weights matrix for esti-
mation (Fotheringham, Crespo, & Yao, 2015; Huang, Wu, & Barry,
2010). Harris, Dong, and Zhang (2013) presented a contextualized
GWR model, thereby the contextual similarities of observations (e.g.
similarity in the attributes of neighbourhoods where houses are located,
measured by certain distance metric) were incorporated into the local
weights matrix for implementing each local regression model. The key
idea underlying this line of GWR model extension is to achieve a better
or more realistic representation of spatial relationships between ob-
servations. Other methodological elaborations of GWR include devel-
oping formal statistical tests of spatial heterogeneity (Leung, Mei, &

Zhang, 2000), and the use of different distance metrics in constructing
the spatial weights matrix (Lu, Charlton, Brunsdon, & Harris, 2016).

This paper contributes to the ongoing GWR developments by ex-
tending a geographically weighted ordinal regression model (GWOR)
for properly exploring spatial data with ordinal categorical response
variables. Ordinal response variables are commonly seen in social sci-
ence research, especially when the research focus is in relation to in-
dividual opinions and attitudes towards events, or subjective assess-
ment of life experiences such as life satisfaction and happiness. Detailed
descriptions of the application scopes of ordinal response variables in a
variety of social science disciplines are provided in Agresti (2010) and
Greene and Hensher (2010). The motivation of extending a GWOR
model lies in two aspects. The first is to address the issue of limited
methodological options to deal with increasingly available geo-refer-
enced survey data in the local spatial modelling literature. Such data
usually quantify important information via categorical variables. Sec-
ondly, we are interested in exploring the socio-spatial variation of life
satisfaction in Beijing, China and examining potential spatial hetero-
geneity in the association between life satisfaction and air pollution.
The GWOR model, demonstrated by examining a geo-referenced life
satisfaction data, can be applied to other spatial data.

Life satisfaction data are often collected based on surveys, in which
questions such as “Overall, how satisfied are you with your life?” are
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asked (e.g. Welsch & Ferreira, 2014). Responses to the question are
usually recorded on a Likert scale, ranging from one being very un-
satisfied to five being very satisfied, for instance. Life satisfaction scores
or ratings are quantitative in nature but the between-category distances
are unknown—the distance between categories of one and two might be
quite different from that between categories of four and five (Agresti,
2010). This differs substantially from a Gaussian variable for which per
unit difference is comparable. It has been shown that applying a linear
regression model to an ordinal categorical variable would cause issues
to model estimation and statistical inferences for regression coeffi-
cients, likely producing misleading model results (Agresti, 2010).

To date, the development of GWR focuses on outcome variables
following a Gaussian (or Normal) distribution, with few notable ex-
ceptions in Nakaya, Fotheringham, Brunsdon, and Charlton (2005)
where a geographically weighted Poisson regression model has been
developed for exploring disease outcomes, and in Fotheringham et al.
(2003) for a geographically weighted Binomial regression models.
Closely related to this study, McMillen and McDonald (2004) presented
a preliminary extension of GWR to geo-referenced ordinal response
variables by proposing a locally weighted ordered probit model.
However, discussions on model specifications such as choices of dif-
ferent link functions for the cumulative probabilities of responses and
choices of adaptive or fixed kernels, and on approaches to test statistical
significance of spatial heterogeneity in regression coefficients are not
provided.

This paper extends the work of McMillen and McDonald (2004) by
offering flexible tools to explore the potential spatial variability in re-
lationships between an ordinal response variable and predictor vari-
ables. The estimation of GWOR model draws upon the locally weighted
likelihood approach via an iterative numerical optimisation procedure
(detailed below). It allows for great flexibility in model specification,
including different link functions (logit and probit) for the cumulative
probabilities of the responses, and a mixed model specification in which
regression coefficients of some variables are spatially varying while
coefficients of other variables are kept spatially invariant (e.g. Mei, Xu,
& Wang, 2016). The R code for implementing various GWOR models
are provided in the Supplementary Information of the paper.

Based on a geo-referenced life satisfaction survey data in Beijing,
this study explores how life satisfaction is spatially linked to air pol-
lution and other factors. There has been a surge of using life satisfaction
data to evaluate environmental amenities such as air quality, the eco-
nomic value of which cannot be directly observed through market
transactions (Ferreira & Moro, 2013; MacKerron & Mourato, 2009;
Welsch, 2006). The theoretical underpinnings of life satisfaction based
environmental evaluation approach are comprehensively reviewed in
Welsch and Ferreira (2014). At its heart, the subjective life satisfaction
is regarded as the experienced utility of individuals, and by estimating
the life satisfaction equation with environmental quality indicators and
income included, the (marginal) willingness to pay (WTP) for en-
vironmental quality can be estimated (e.g. Ferreira & Moro, 2010). The
issue, however, is that the life satisfaction equation was predominantly
estimated by using aspatial regression models, implicitly assuming WTP
for environmental quality improvement to be constant across space.
This is a rather restrictive assumption. It is likely that people living in
different locations with varying socio-economic characteristics tend to
have different preferences for air quality and thus varying WTP for air
quality improvement or air pollution abatement (Bayer, Ferreira, &
McMillan, 2007; Ferreira & Moro, 2013). The GWOR model enables us
to estimate the spatially varying associations between life satisfaction
and air pollution and income, taking locational heterogeneity into ac-
count.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of non-spatial ordinal regression models. In Section
3, we describe the GWOR model and provide details of model estima-
tion. Section 4 applies the GWOR model to explore the socio-spatial
variation of life satisfaction and estimate the economic value of air

quality in Beijing. Conclusions are provided in Section 5.

2. A non-spatial ordinal regression model

Following Agresti (2010) and Greene and Hensher (2010), we use a
latent variable approach to formulate an ordinal regression model due
to its intuitive link to the simple linear regression models. Denote Yi

∗ as
a latent continuous outcome variable and xi a set of predictor variables
such as income, air pollution, and others. A linear regression model
links Yi

∗ to xi,

= + = …∗ βY x i Nϵ ; 1, ,i i i (1)

where i indexes each observation and N, the sample size. xi=[xi,1, xi,2,
…, xi,p] is a row-vector of predictor variable values of observation i
while β is a column-vector of regression coefficients to estimate. The
mapping of the unobservable Yi

∗ to the observed categorical response Yi

depends on a set of cut-off points or threshold values [α0, α1,…, αJ] on
the scale of Yi

∗: Yi= j if aj−1 < Yi
∗≤ aj, j=1,…, J where J are the

number of response categories. Ordinal regression models focus on the
cumulative probability of an observation falling in category j or below,
which is expressed as,

≤ = ≤ = ≤ − = −∗ β βY j Y a a x F a xP( ) P( ) P(ϵ ) ( ).i i j i j i j i (2)

Different specifications of the density function for ϵ leads to dif-
ferent forms of cumulative probabilities for P(Yi ≤ j): 1/
(1+ exp (−aj+ xiβ)) if a logistic density was specified, and Φ(aj− xiβ)
if a Normal density was used where Φ is the cumulative distribution
function of a standard Normal density. The logistic specification was
favoured due to its simplicity in model parameter interpretation
(Agresti, 2010). The probability of (Yi= j), conditioning on xi, is F
(Yi

∗≤ αj) – F(Yi
∗≤ αj−1). The GWOR models extended here allows for

both Normal and logistic densities for ϵ.
The effect of a predictor variable, say x1, on the cumulative prob-

ability of a response falling into category j is not linear because of the
non-linear cumulative distribution function. This is seen from the par-
tial derivative of the cumulative probability with respect to x1, ∂P
(Yi≤ j)/∂x1= f(aj− xiβ)β1 where f(.)= F′(.) is the density function
and β1 the regression coefficient of x1. The interpretation of estimated
coefficients can make use of the concept of odds ratios as in a simple
binary logit model. Taking the log odds of the cumulative probability in
(2) and inserting the cumulative logistic probability formula, we obtain,

≤
− ≤

= − βlog
Y j

Y j
a x

P( )
1 P( )

.i

i
j i

(3)

The equation shows that the effect of x1 on the cumulative prob-
ability on the logit scale is simply β1 regardless the response category.
The maximum likelihood estimation approach is usually used for model
estimation. For observation i, let yi1, …, yi,J be binary indicators of
response categories, then we have yij=1 and yik=0 for k≠ j if Yi= j.
The log-likelihood function of the model is,

∑ ∑= ≤ − ≤
= =

∗ ∗
−θl y F Y a F Y a( ) log[ ( ) ( )]

i

N

j

J

ij i j i j
1 1

1
(4)

where θ=[β, α1, …, αJ−1]. It's useful to note that only J− 1 cut
points are needed to divide the latent variable Y ∗ into J categories
while α0 and αJ are set to −∞ and +∞, respectively. Although there is
not a tractable solution for the first-order conditions of the equation, it
has been shown that the log-likelihood function has a unique global
optimum so different types of iterative maximisation algorithms can be
applied to estimate θ (Burridge, 1981; Pratt, 1981).

3. A geographically weighted ordinal regression model

We now describe the geographically weighted ordinal regression
model that allows for regression coefficients varying across space.
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