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Research documents higher stock returns in November through April than for the rest of the year. This
anomaly is known as the “Halloween effect” and results in the following trading rule: sell stocks in early May,
invest in T-bills, and re-invest in stocks on Halloween. In contrast to recent studies, we show that the
Halloween effect is robust to consideration of outliers and the “January effect.” Additionally, we show that
investing in a “Halloween portfolio” provides risk-adjusted returns in excess of buy and hold equity returns
even after consideration of transaction costs.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The “Halloween effect,” identified by Bouman and Jacobsen
(2002), is an equity return anomaly in which themonths of November
through April provide higher returns than the remaining months of
the year. This effect, if real, is perhaps of greater interest to investors
than most other anomalies because the trading rule is simple to
implement with low transactions costs, making exploitation of this
anomaly potentially profitable. More recent studies posit that this
anomaly might be driven by outliers or is simply the “January effect”
in disguise. In this study, we examine the robustness of the Halloween
effect to the consideration of outliers and the January effect. We also
construct mean-variance efficient portfolios to determine whether
investing in a Halloween portfolio can result in risk-adjusted returns
superior to those of a buy-and-hold market portfolio. Finally, we
examine the impact of transaction costs on the returns to investing in
a Halloween portfolio.

2. Literature review

In their seminal paper, Bouman and Jacobsen (2002) analyze stock
returns across 37 countries from January 1970 through August 1998
and find a Halloween effect in 36 of these markets. This finding is
remarkable in light of the adage “sell in May and go away” having
appeared numerous times in the financial press before and during

their sample period. Most return anomalies disappear after discovery,
presumably as opportunistic traders exploit them. The effect is
particularly strong in European countries and is not the result of
risk differences between the May–October and November–April
timeframes that delineate the Halloween effect. Bouman and Jacobsen
also demonstrate the economic significance of Halloween-based
investment, even when transaction costs are considered.

Bouman and Jacobsen's results for U.S. stock returns are more
marginal. When the January effect is not considered, the Halloween
effect attains statistical significance at the 5% level. After incorporating
the January effect, significance falls just short of the 10% level they
employ as a cutoff. However, the November–April period has a slightly
smaller return standard deviation than the May–October period,
adding to its attractiveness. Jacobsen and Visaltanachoti (2009)
examine differences in the Halloween effect among U.S. stock market
sectors and show that the effect is strongest for production sectors and
weakest for defensive, consumer-oriented sectors.

Maberly and Pierce (2004) examine monthly U.S. stock returns
over the same 1970–1998 period as Bouman and Jacobsen. By treating
the October 1987 (−22.55%) and August 1998 (−15.81%) returns as
outliers, the authors purport to show the dependence of the
Halloween effect on these two extreme returns. The effect is
diminished and not statistically significant at any conventional level
in an alternative specification that controls for these two observations.
The authors do not provide an objective basis for identifying exactly
two outliers and do not investigate the impact of considering
additional outliers. Maberly and Pierce (2003) also examine the
impact of outliers on the Halloween effect in Japanese equity markets.

Galai, Kedar-Levy, and Schreiber (2008) also posit a relation
between the Halloween effect and outliers. In contrast to the results of
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Maberly and Pierce (2004), Galai et al. (2008) find that, in daily S&P
500 returns, the Halloween effect is significant only after controlling
for outliers. This difference in findings might be due to analyzing daily
returns versus monthly, the different time period analyzed (1980–
2002 versus 1970–1998), or even the dropping of return observations
from the sample. “Returns on non-consecutive days, other than
weekend returns, are excluded, as they are not daily returns” (Galai et
al., 2008, pp. 786–787).

Outliers are an important aspect researchers have investigated as a
possible source of the Halloween effect. In this study, we utilize a
formal set of econometric techniques known as robust regression to
determine the size and significance of the Halloween effect after
controlling for extreme returns. The advantage of this approach is that
it does not require any ad hoc specification of the number of outliers or
the number of standard deviations from the mean an observation
must be before it is considered an outlier. Rather, robust regression
reduces the influence extreme returns have on the ordinary least
squares (OLS) estimates in rough proportion to the departure of the
observation from the regression fit. Our approach eliminates the
possibility of data mining in the determination of the number of
outliers for which to control.

Lucey and Zhao (2008) examine U.S. stock data from 1926 to 2002
to determine the robustness of the Halloween effect to the consider-
ation of the January effect, first identified by Wachtel (1942) and
reinforced by Rozeff and Kinney (1976), in which equity returns are
significantly higher in January than in other months. They find no
evidence of a Halloween effect in their full sample. Using subperiod
analysis, they show that neither the Halloween effect nor the January
effect are consistently significant for value-weighted returns and that
only the January effect is consistently significant for equal-weighted
returns. The authors contend that the Halloween effect, when it does
appear, might simply be the January effect in disguise.

The subperiod findings of Lucey and Zhao (2008) are likely the
result of the relatively short subperiods they examine, as we
demonstrate in this study. Over three subperiods since 1946, their
average estimate of the Halloween effect for the CRSP value-weighted
index is a large 1.02% per month. However, because the sampling
subperiods are small, the tests have reduced power and statistical
significance is found only in the 1946–1965 period. We update the
CRSP returns through 2008 and, with larger subperiods, find a
Halloween effect over the most recent 55 years that it is significant
and independent of the January effect. Like Lucey and Zhao, we find no
evidence of a Halloween effect in the earliest subperiod we examine,
1926–1953. However, over both the 1954–1980 and the 1981–2008
subperiods, our evidence suggests a sizable Halloween effect that is
independent of the January effect. This might explain the timing of the
earliest reference to “sell in May and go away,” which appears in a
1964 issue of the Financial Times.

In this study, we examine the robustness of the Halloween effect to
outliers and the January effect over the period from 1926 to 2008. We
also investigate how investment in a “Halloweenportfolio,”whichholds
equities from November to April (excluding January) and Treasury bills
the remainder of the year, might improve upon the Sharpe (1966) ratio
attainable using a buy-and-hold investment strategy.

3. Sample and method

We use monthly value-weighted and equal-weighted stock
returns from the Center for Research in Security Prices (CRSP) over
the period 1926–2008. We use the following regression model,
identical to that of Lucey and Zhao (2008), in our examination:

Rt = α + β1Wt + β2 Jt + �t ð1Þ

where Rt is the return on the index, Wt is the Halloween indicator,
which has a value of “1” in the months from November to April and

“0” otherwise, and Jt is the January indicator, which has a value of “1”
in January and “0” otherwise.

In addition to using OLS regression, which is sensitive to outliers,
we use the M-estimation techniques of Huber (1964) and Hampel
(1974), which are more robust in the presence of outliers. OLS
coefficient estimates are the solution to a sum of squared errors
minimization problem. Each sample observation has an associated
squared error, which receives the same weight, w(e)=1, in the
following minimization, minβ∑ t=1

T w(et)et2. The concept behind the
M-estimators of Huber and Hampel is to dampen the influence of
extreme errors by applying reduced weights to larger squared errors.
Both estimators set w(e)=1 for errors up to one or more threshold
levels but reduce weights for errors beyond these levels. For example,
the Huber estimator has a single threshold, kσ, and sets w(e)=1 for
|e|≤kσ and sets w(e)=kσ/|e| for |e|Nkσ. The parameter k in the
threshold level is referred to as a “tuning constant” and it is
common practice in application to estimate the “scale factor” σ,
with σ̂ = MAR= :6745ð Þ, where MAR is the median absolute error
from OLS. Aside from the different number of threshold levels, the
primary differentiating point of the Hampel estimator is that it
applies a finite rejection point, beyond which the observation is
classified as an outlier and given zero weight.

The estimation of the Huber and Hampel regressions can be
viewed as a weighted least squares problem, minimizing the
generalized sum of squared errors expression above. The solution to
this minimization is given by b̂ = X′WXð Þ−1X′WY , where W is a T×T
diagonal weight matrix with elements wtt=w(et). The weights,
however, depend upon the errors, the errors depend upon the
estimated coefficients, and the estimated coefficients depend upon
the weights. An iterative solution, in this case iteratively reweighted
least squares (IRLS), must be applied.

To perform IRLS we start by first computing OLS estimates. Second,
from the error terms, we calculate weights according to the weighting
scheme specified by the particular M-estimator. Third, we solve for
the new weighted least squares coefficient estimates. We repeat the
second and third steps, using the error terms from the previous
iteration, until the estimated coefficients converge. Upon conver-
gence, we calculate an estimated asymptotic covariancematrix for the
coefficients to determine their statistical significance (see Fox, 1997,
for details).

Our selection of tuning constants is based on the work of Hoaglin,
Mosteller, and Tukey (1983), who study the effect of varying these
constants for many different robust estimators. In general, a smaller
tuning constant provides more resistance to outliers at the expense of
lower efficiency in the case of normally distributed errors. We select
mid-range values for the tuning constants in both the Huber and
Hampel regressions. As noted above, we use the normalized median
absolute deviation as the scale factor in the Huber regressions. As is
common practice, we use the median absolute deviation as the scale
factor in the Hampel regressions.

We perform the OLS, Huber, and Hampel regressions for the entire
U.S. sample period and for the subperiods of 1926–1953, 1954–1980,
and 1981–2008. We also perform these regressions using a global
sample of the same 37 countries examined by Bouman and Jacobsen
(2002). To further demonstrate the impact of outliers on the
Halloween effect, we use a deletion diagnostic method (Belsley,
Kuh, & Welsch, 1980) to calculate the sensitivity of the estimated
regression coefficient for the Halloween indicator to extreme
observations.

Last, in order to assess the investment significance of the
Halloween effect, we form mean-variance efficient portfolios using
the method of Britten-Jones (1999). Britten-Jones (1999) demon-
strates that OLS regression can be applied to determine optimal
portfolio weights. The Britten-Jones framework regresses a T-vector of
ones on K independent variables representing the excess returns on K
risky assets (or portfolios) considered for investment from time 1 to T.

380 K.S. Haggard, H.D. Witte / International Review of Financial Analysis 19 (2010) 379–387



https://isiarticles.com/article/13333

