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A B S T R A C T

We all pass out our lives in private perceptual worlds. The differences in our sensory and perceptual experiences
often go unnoticed until there emerges a variation (such as ‘The Dress’) that is large enough to generate different
descriptions in the coarse coinage of our shared language. In this essay, we illustrate how individual differences
contribute to a richer understanding of visual perception, but we also indicate some potential pitfalls that face
the investigator who ventures into the field.

1. Introduction

Visual science continues to generate an enormous body of empirical
data on the characteristics and mechanisms of visual processing. Most
such studies are designed to test different observers under nominally
the same conditions, to understand the effects of those conditions and
their implications for underlying processes. Multiple observers are in-
cluded to ensure that the results are general, for example, to confirm
that the findings can be replicated with naïve observers who are una-
ware of the aims of the study. The use of multiple observers also ensures
that the results are significant and reliable. The data from different
observers provide the estimate of measurement error. In this regard, the
differences between observers are treated as a nuisance factor to be
ignored – as mere noise in the measurements. And in very many studies
these differences have accordingly lain unexploited.

However, the patterns of variations between observers are often
systematic, and often arise from real differences in the very optical,
neural, and cognitive processes that mediate the perceptions that the
researchers are interested in. In this regard, individual differences
provide a largely unmined treasure trove of information about these
processes (de-Wit & Wagemans, 2016; Peterzell, 2016; Wilmer, 2008).
Today, visual scientists have available to them extensive collections of
archival data from recent times and from decades past. These data often

include individual variability that is reported but left unexamined.
Compared to many areas of experimental psychology, these psycho-
physical data can have very low measurement (intra-observer) error,
and in many cases can be evaluated against precisely quantified prop-
erties or well-defined models of the visual system. They therefore
promise powerful new insights. As new questions are pursued, there is
also potential for experimental designs that yield richer information by
exploiting inter-observer variation, and visual scientists are increas-
ingly turning to studies focused on measuring and analysing the visual
differences between observers.

Yet all datasets also include variations that are not of interest to the
experimenter, that reflect random noise or introduce confounds un-
related to the tested hypotheses (see §5 below). These spurious varia-
tions may mask or impersonate the target of inquiry. As we discuss
below, these confounds can be especially problematic in studies of in-
dividual differences. Thus investigators must mine individual variations
cautiously, or they risk lining their pockets with fool’s gold. We hope
this review will both highlight the power of individual differences in
vision research, and provide some prescriptions for best practices.

2. Differences between individuals

Individual differences can be defined and interpreted in a variety of
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ways. One important distinction is between ‘individual differences in
data’, and ‘true individual differences’. The former phrase refers to dif-
ferences obtained in actual measurements, and these can arise from real
differences between individuals, but also from measurement error (e.g.
from random variability, systematic biases, instrumental variation, and
more). ‘True individual differences’ refers to variability that remains
after the effect of measurement error has been excluded. It is a hy-
pothetical construct, and an aspirational goal of measurement. In other
definitions, ‘true individual differences’ involve more than zero mea-
surement error, because they include only variability that is intrinsic to
individuals, reflecting differences in a trait and not merely a state. As
we discuss below, these distinctions are important for deciding how to
design and interpret experiments probing observer differences.

When individuals who differ from others in a consistent way are
categorized as a group, individual differences lead to group differences.
Very many studies have investigated such group differences. Much of
clinical vision is concerned with understanding disease by comparing
control individuals to different patient populations; studies of devel-
opment or lifespan compare individuals grouped by age; and studies on
demographic factors might classify participants by gender or ethnicity.
In designing these studies, individuals are often classified by predefined
criteria, and results are then analysed in terms of the discrete groups.
This has of course been a very fruitful approach, but can miss oppor-
tunities for a richer understanding of the observer differences because
the within-group differences are again treated as noise. Research on
true individual differences treats each observer as an individual. This
can and often does still allow for observers to be classified by different
criteria (e.g. according to their age or visual acuity), but importantly,
also allows measurements to be analysed when the relevant classifica-
tion is unknown (e.g. in the case of a set of observers all defined as
‘normal’ on some assessment).

The distinction between groups and individuals also has important
implications for how a visual process is characterized or modelled.
Colour science, and especially applied fields like colorimetry, rely
heavily on the concept of a standard observer, defined by the average of
the measurements for a large number of individuals. Similar models
have been developed for other visual attributes such as spatial sensi-
tivity (Watson & Ahumada, 2005). The standard observer provides an
important working assumption for studying or predicting visual per-
formance, but also has important limits, since it may rarely describe the
properties of an actual observer. As we note below, for some applica-
tions the standard observer is of little value because it does not allow
sufficient specification of the impact of the stimulus. Moreover, the
mean alone provides no information on the range of tolerances that
might be acceptable, say, to a given proportion of the population for an
application like colour rendering. New observer models are being de-
veloped that explicitly incorporate estimates of normal variation in
colour vision to better predict how a given individual or group might
experience colour (Asano, Fairchild, & Blondé, 2016).

3. Sources of individual differences in vision

Variations in visual processing arise from many sources and are
likely to be a prevalent characteristic at all levels of visual coding and
all stages of the visual pathways. Even in the very first steps of image
formation there are large, stable, and consequential variations in the
optical aberrations of the eye, which affect the quality and form of the
individual’s idiosyncratic retinal image (Castejon-Mochon, Lopez-Gil,
Benito, & Artal, 2002; Porter, Guirao, Cox, & Williams, 2001).

Colour vision is a case where patterns of individual differences have
been extensively characterized (Webster, 2015b). The eye’s optics differ
in spectral quality, owing to pigment in the crystalline lens that screens
light of shorter wavelengths. The density of the lens pigment varies
markedly across observers and also increases steadily with age
(Pokorny, Smith, & Lutze, 1987; Weale, 1988; Werner, 1982). Similarly,
observers vary widely in the density of the macular pigment screening

the central fovea (Bone & Sparrock, 1971; Werner, Donnelly, & Kliegl,
1987. These pre-receptoral filters strongly bias the spectrum of the light
reaching the photoreceptors and are in fact the primary source of inter-
observer variations in colour matching (Webster & MacLeod, 1988).
Moreover, the spectral sensitivities of the cone photoreceptors vary
reliably in the positions of their peaks (λmax) (Winderickx et al., 1992)
and in their bandwidths (e.g. because of variations in optical density)
(Wyszecki & Stiles, 1980). As is well known from studies of colour
deficiencies, there can also be large and diverse differences in both the
number and nature of the cone types (Neitz & Neitz, 2011). Also, there
are striking differences in the relative numbers of different cone types.
For example, it is often noted that there are on average twice as many L
cones as M cones in humans, yet in individuals with normal colour
vision the ratio of L to M cones has been reported to vary from 1:1 to
16.5:1 (Hofer, Carroll, Neitz, Neitz, & Williams, 2005).

There are also large and reliable individual differences in subjective
judgments of colour, i.e. in how colours are reported or categorized.
The stimulus spectra that observers describe as unique hues (pure red,
green, blue, or yellow), or that they experience as achromatic, vary
widely from one observer to the next (Bosten, Beer, & MacLeod, 2015;
Kuehni, 2004; Webster, Miyahara, Malkoc, & Raker, 2000b). Moreover,
there are very large differences in the patterns of colour naming. An-
thropological studies of colour naming have focused on cross-linguistic
differences in order to understand the aetiology of colour categories and
whether they are more strongly determined by universal (e.g. biolo-
gical) or relative (e.g. cultural) processes (Kay & Regier, 2006). How-
ever, these analyses have tended to overlook the enormous variations in
colour naming within a language. A re-examination of the World Colour
Survey found that individuals varied widely in their patterns of colour
naming and that these basic ‘motifs’ were often more similar across
speakers from different languages than among members from the same
linguistic group (Lindsey & Brown, 2009). Recent analyses have also
pointed to the importance of characterizing individual differences for
understanding the representation of colour in a culture. For example,
some languages are characterized by few colour terms and high levels
of uncertainty at the level of the individual, yet include a rich parcel-
lation of colour at the level of the society (Lindsey, Brown, Brainard, &
Apicella, 2015).

A further important source of variation in colour vision – and indeed
all vision – is variation in the observer’s environment. While natural
visual environments have many characteristic properties that are
thought to have shaped visual coding (Geisler & Ringach, 2009;
Simoncelli & Olshausen, 2001), the world also varies across both space
and time. For example, observers are exposed to very different colours
in lush or arid environments, and colours in the same location can cycle
with the seasons (Webster, Mizokami, & Webster, 2007; Webster &
Mollon, 1997). Similarly, the diet of faces experienced by an individual
varies widely depending on his or her social environment. Vision rou-
tinely adapts to the prevailing stimulus characteristics of the environ-
ment (Webster, 2015a). Potential examples of such contextual effects
are seasonal changes in colour appearance (Welbourne, Morland, &
Wade, 2015) or ‘other-race’ effects in the perception of faces (Meissner
& Brigham, 2001).

As the forgoing examples suggest, the causes of individual differ-
ences in vision are many. Some can be highly stable and tied directly to
genes. Others depend on lifestyle and experience. For example, age-
related changes in lens pigment density are largely a consequence of
exposure to light (Lindsey & Brown, 2002), while the density of macular
pigment (consisting of the retinal carotenoids lutein and zeaxanthin)
varies with the amount of carotenoids in the individual’s diet
(Hammond et al., 1997). The sources of differences can also be intri-
cately intertwined. For instance, an indirect genetic effect on macular
pigment density could arise if polymorphism of the taste receptors
mediated differences in diet, leading to a knock-on effect on macular
pigment and colour vision. Similarly, an individual’s culture or pro-
fession will determine the distribution of colours or faces he or she is
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