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In nuclear power plant operations, there is a possibility that a stimulating event can initiate undesired
accident. Therefore, prediction of the available recovery time (the time within which restorative mea-
sures can be taken without compromising the threshold safety limits) is a serious challenge to avoid any
accident scenario. Recent advances in sensor technology has made it possible to continuously monitor
the plant component parameters. Fuzzy logic based artificial intelligence data-driven systems compare
real time operational parameters with the pre-stored reference failure database to provide an effective
estimate of the recovery time available. This paper demonstrates the prediction of available recovery
time in case of an accident scenario in U-tubes of Nuclear Power Plant (NPP) heat exchanger. When a
failure scenario evolves, its evolution pattern is compared with the reference failure database using fuzzy
similarity analysis. A reference failure database consisting of actual accidental history is not feasible. In
this research, an effort has been made to generate reference failure database employing Computational
Fluid Dynamics (CFD) tool of commercial code ANSYS 16.2. Reference failure database consists of data
collected from multiple U-tube temperature based failure scenarios. The validity of this procedure is
checked by estimating recovery times for several test patterns. Moreover, the actual and predicted re-
covery times have been compared for the test patterns. A framework has been presented, in which
temperature threshold is detected and a comparison is made between the evolving patterns and the
reference database. This study gives a roadmap for the implementation of fuzzy logic prediction to
enhance the safety of Nuclear Power Plant (NPP) components.
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1. Introduction

In a Nuclear Power Plant (NPP), the reliability of all components
need to be ensured, in order to maintain the safety standards of the
plant. Therefore, it is essential to continuously monitor all the
components for providing advanced warnings for managing the
accidents (IAEA, 2003), so that restorative measures can be taken to
mitigate the effects of any stimulating event. In light of the recent
advances in sensor technology (Azirah et al.,, 2013), it has been
made possible to continuously monitor both input and output pa-
rameters of the components through data collection. Such data,
acquired by sensors, is useful for the identification of potential
failure events.

The collected data can be used to perform various prognostic
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tasks which, are important in reliability and safety (Chiang et al.,
2001) analyses of the system or that of the component of
concern. Such approaches are classified into model-based and data-
driven categories. Model-based approach requires the physical
model of the system for RT prediction, as in most of the cases, the
cost/benefit ratio (Zio and Di Maio, 2010) of using the physical
model of the system is not favorable. Therefore, such a method is
not suitable for this application. On contrary, data driven method
employs online-monitored data related to system or component of
concern, making it well suited for online estimation of RT. The
method has the ability to transform high dimensional noisy data
into lower dimensional information (Elena Dragomir et al., 2007),
being all-the-more useful for decision-making.

Data-driven methods can be classified into two classes; the
statistical method and the artificial intelligence techniques. The
most common statistical method is fitting a curve to the available
data by using regression models. These methods may result in large
errors due to their inability to deal with uncertainties and non-
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Nomenclature

Time(s)

Membership value

Database matrix

Distance score

Number of time steps

Number of failure patterns
Temperature (K)

Time(s)

Weight

Normalized weight
Membership function constant
Membership function constant
Point-wise difference
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Superscript
* Normalized value

Subscripts

i Row index

j Column index
S Sum of weights

Abbreviation

ANSYS  Analysis of Systems

ASME  American Society of Mechanical Engineers
CFD Computational fluid dynamics

CFX Computational Fluid Xerography

DAQ Data acquisition

FT Failure time

ICEM Integrated Computer Engineering and Manufacturing
MATLAB Matrix Laboratory

MF Membership function

NPP Nuclear power plant

RT Recovery time

PWR Pressurized water reactor

linearities. On contrary artificial intelligence tools employ neural
networks for prediction. For prognosticating purposes, the most
reliable techniques are recurrent neural networks and neuro fuzzy
logic methods (Zio et al., 2010). Due to the lack of systematic
approach of the earlier method, limitations exist for their applica-
tion in critical systems. On contrary neuro-fuzzy logic technique
has acquired considerable importance due its ability to deal with
uncertainties and non-linearities in real life problems.

The concept of fuzzy logic relies on the idea of relatively-graded
membership function, which is inspired by the human sense of
perception and cognitive ability. Ground work in the fuzzy logic
sets was laid out by (ZADEH, 1965). It is an extremely powerful tool
of prediction, which has been used for diversified real-life appli-
cations ranging from facial pattern recognition to the prediction of
stock market.

The principal purpose of purposing neuro-fuzzy logic based
online condition monitoring system is to predict whether a
component can perform its intended functions (Tyan et al., 1995)
during its lifespan. If not, it is inevitable to predict the time to
failure by recognizing the failure mode. This failure time is identi-
fied as recovery time (RT) for that particular component.

The goal of this study is to develop a road map for an on-line
monitoring tool that can be embedded in the operator support
system, which could identify any stimulating accident scenario and
help the operator in decision making process. The idea has been
conceived from the effective use of fuzzy logic prediction which
maps the current stimulus of an initiating event in a system with its
past projections and reflects a prediction for future.

U-tubes are critical components of PWR Nuclear Power Plants.
These tubes carry highly pressurized and radioactive primary water
coolant which is used to heat the secondary-side fluid. Beside
performing its main functions, heat exchanger tubes must provide
a reliable pressure boundary (Obrutsky et al., 2009) between pri-
mary and secondary fluid because any leakage could result in
radioactivity release to the secondary fluid. Therefore, this pro-
cedure is applied on U-tube for estimating its RT.

The complete computational framework has been presented,
which shows the implementation of neuro-fuzzy logic based data-
driven monitoring system. As its application, this artificial intelli-
gence tool requires some past historical failure database of the
concerned component for failure prediction. The past projections of
dynamic failure scenarios of U-tube heat exchanger are obtained

through multiple transient analyses using Computational Fluid
Dynamics (CFD) tool of the commercial code ANSYS 16.2. These
failures scenarios are developed by introducing severe conditions
at the U-tube inlet and the average wall temperature of the fluid
domain is monitored after each timestep. The time, when a failure
scenario strikes the threshold value of temperature, is identified as
recovery time (RT).

The article is arranged as follows: section 2 presents the CFD
transient analysis of U-tube to create failure pattern database. An
algorithm for neuro-fuzzy based similarity analysis has been pre-
sented in section 3. In section 4, this algorithm was implemented
on a reference database collected through CFD transient analysis of
U-tube. In section 4, results have been presented, showing the
implementation of this approach on a U-tube heat exchanger.
Finally, a conclusion is drawn in section 4, based on the results.

2. Database generation

Equipment historical failure database can be generated by using
CFD tools. Since the heat exchanger consists of hundreds of tubes
(in which the coolant distributes itself equally), only a single tube is
analyzed instead of the whole heat exchanger, for obtaining the
past failure patterns.

In this study, the database is generated by modelling a fluid
domain using ICEM. The wall material is considered to be Inconel
600 (a typical U-tube material in heat exchangers). According to
ASME Code Section II-part D (ASME, 2004), the design temperature
for Inconel 600 with alloy designation N06022 should be 616 K.
Thereby, the average temperature at the wall of the fluid domain
should not exceed this threshold value.

Average temperature at the wall of U-tube can be obtained
through CFD transient analysis of the U-shaped fluid domain. To
obtain temperature based failure patterns of U-tube, severe con-
ditions are introduced at the inlet of U-tube and average wall
temperature is plotted with respect to time. Both fluid domain and
temperature distribution are shown for the U-tube (Fig. 1 & Fig. 2)
for an accident case.

The time when an average wall temperature strikes the
threshold value (616 K) is identified as failure time. This is shown in
Fig. 3.

For the sake of simplicity, some assumptions have been pro-
posed in this study (Pu et al., 2015):



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/134129

