Original Article

Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats

Graziele Halmenschlager a,*, Ernani Luis Rhoden b, Gabriela Almeida Motta c, Lucas Sagrillo Fagundes d, Jorge Luiz Medeiros Jr e, Rosalva Meurer c, Cláudia Ramos Rhoden c

a Centro Universitário Ritter dos Reis (UniRitter) and Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) – PPG Ciências da Saúde, Porto Alegre, RS, Brazil
b Department of Urology at Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Urologista Irmã Nadine Santa Casa de Porto Alegre (ISCMPA) and Hospital Moinhos de Vento de Porto Alegre (HMV), Porto Alegre, RS, Brazil
c Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) – PPG Ciências da Saúde-Porto Alegre, RS, Brazil
d INRS-Institut Armand-Frappier (Université du Québec) and BioMed Research Center Laval, Quebec, Canada
e Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio De Janeiro, Rio De Janeiro, Brazil
f Laboratory of Multidisciplinary of Sciences, Biomedical Center, Medical School of Valença, Valença/Rio De Janeiro, Brazil

Received 6 May 2016; received in revised form 26 June 2016; accepted 11 September 2016

KEYWORDS
Testosterone replacement; Histomorphometry; Androgen deprivation; Hypogonadism; Corpus cavernosum

Abstract Objective: To evaluate the effects of testosterone on the maintenance of corpus cavernosum (CC) structure and apoptosis.
Methods: Animals were divided into three groups: sham operation group (n = 8) underwent sham operation; Orchiectomized (Orchiec) + oily vehicle group (n = 8) underwent bilateral orchiectomy and received a single dose of oily vehicle by intramuscular injection (i.m.) 30 days after orchiectomy; and Orchiec + T group (n = 8) underwent bilateral orchiectomy and received a single dose of testosterone undecanoate 100 mg/kg i.m. 30 days after the surgery. Animals were euthanized 60 days after the beginning of the experiment with an anesthetic overdose of ketamine and xylazine. Blood samples and penile tissue were collected on

* Corresponding author.
E-mail address: grazihal@gmail.com (G. Halmenschlager).
Peer review under responsibility of Second Military Medical University.

http://dx.doi.org/10.1016/j.ajur.2017.02.001

Please cite this article in press as: Halmenschlager G., et al., Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats, Asian Journal of Urology (2017), http://dx.doi.org/10.1016/j.ajur.2017.02.001
1. Introduction

Testosterone (T) is known to be an essential hormone involved in normal sexual male response, including erectile function [1,2]. Besides that, it is well established that normal erectile function requires the correct balance of hormonal factors, such as T, and corpus cavernosum (CC) histological structure [1,2]. Although there are clinical evidences demonstrating that low levels of T are associated to erectile dysfunction (ED) [3], this subject is still controversial, since some authors have not observed any association between T levels and ED [4]. In fact, the exact role of androgens in erectile function and dysfunction remains unclear [1,5,6].

Traish et al. [5,6] observed that androgen deprivation by surgical castration damages the histological structure of CC, which leads to veno-occlusive dysfunction, an important cause of organic ED [1,5,6]. Recently, Miranda et al. [7] evidenced that T deprivation decreases smooth muscle and sinusoidal space content, an effect reversed by testosterone replacement. The decrease of smooth muscle content in response to androgen deprivation is believed to be due to increased cellular apoptosis [1,8]. In fact, there are several data demonstrating increased apoptotic cells following androgen deprivation [1,8]. Besides that, T replacement prevents CC structures apoptosis, suggesting that androgen may have a role in apoptotic cascade [8].

Therefore, the aim of the study is to evaluate the effects of T on the maintenance of CC histological structures (smooth muscle, collagen, elastic fibers and sinusoidal space) and on apoptosis in order to better elucidate the interplay among androgens and CC structures.

2. Materials and methods

2.1. Animals and study design

The experimental protocol was approved by Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Ethical Committee for Research and all efforts were made to minimize discomfort, distress and animals' suffering. All experimental procedures were carried out according to the International Guiding Principles for Biomedical Research Involving Animals of the Council for International Organization of Medical Sciences and The International Council for Laboratory Animal Science.

Ninety-day old male Wistar rats (~ 250 g), obtained from the animal facility of UFCSPA, were used. The animals were maintained under standard conditions of temperature (22 ± 2) °C with a 12 h light/dark cycle (lights off at 5 p.m.). The animals were fed a standard laboratory rat chow and had water available ad libitum.

Animals were divided into three groups: sham operation group (n = 8) underwent sham operation; Orchiectomized (Orchiec) + oily vehicle group (n = 8) underwent bilateral orchiectomy and received a single dose of oily vehicle by intramuscular injection (i.m.) 30 days after orchiectomy; and Orchiec + T group (n = 8) underwent bilateral orchiectomy and received a single dose of testosterone undecanoate (Nebido®, Bayer Schering Pharma, Berlin, Germany) 100 mg/kg i.m. 30 days after the surgical procedure [9]. Both oily vehicle and testosterone undecanoate were injected into the animals’ muscle biceps femoris in the right hind leg.

All surgical procedure were performed under sterile condition and ketamine and xylazine (10 mg/kg and 80 mg/kg i.p., respectively) anesthesia. Animals from Orchiec + oily vehicle and Orhiec + T groups were submitted to bilateral orchiectomy. The surgical procedure was performed with a 2-cm scrotal midline incision and both testes were removed. Sham operation group underwent the same surgical procedure and manipulation; however, testes were not removed. Ibuprofen (Buprol®; Multilab, São Jerônimo, Brasil) 20 mg/kg, 8-8 h, was given by gavage during two consecutive days. Animals’ body weight was monitored for Tundecanoate dose adjustment.

All animals were euthanized 60 days after the beginning of the experiment with an anesthetic overdose of ketamine.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات