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h i g h l i g h t s

• We present a model for consensus formation.
• We study the effect of different network topologies on the emergence of consensus.
• We conclude that heterogeneous topologies inhibit the formation of consensus.
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a b s t r a c t

The present work analyzes a particular scenario of consensus formation, where the in-
dividuals navigate across an underlying network defining the topology of the walks. The
consensus, associated to a given opinion coded as a simple message, is generated by
interactions during the agent’s walk and manifest itself in the collapse of the various
opinions into a single one. We analyze how the topology of the underlying networks
and the rules of interaction between the agents promote or inhibit the emergence of this
consensus. We find that non-linear interaction rules are required to form consensus and
that consensus is more easily achieved in networks whose degree distribution is narrower.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The role of complex networks as a mathematical tool to formalize the underlying topology in several propagating
phenomena of social extraction has beenwell established in the last years.When looking formodels of the spread of diseases
or the propagation of information, rumors and ideas, complex networks provide a plethora of alternative topologies that
serve tomimic the complexweave of the interpersonal relationships [1–4]. At amore abstract level, diffusion in general is one
of the fundamental processes taking place in networks [5–7]. Diffusive propagation on a network generates the opportunity
that agents get in touch and interchange ideas and information. Given the appropriate rules for interchange and network
topology this could lead to the appearance of consensus among the opinions of the different agents.

Consensus formation is a widely studied phenomenon in social sciences. One of the main goals is to understand the
emergence of consensus in a system involving a number of interacting agents. In [8] the authors study a model in which
each agent can communicate with local neighbors and analyze the emergence of consensus. They find that increasing
communication between agentswho have common friendswill prolong the time needed for the system to reach a consensus
state. In [9,10] the authors study adaptive networks and show that the network topology fosters cluster formation by

* Corresponding author.
E-mail addresses:matog@cab.cnea.gov.ar (G. Mato), kuperman@cab.cnea.gov.ar (M.N. Kuperman).

https://doi.org/10.1016/j.physa.2017.12.071
0378-4371/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2017.12.071
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.12.071&domain=pdf
mailto:matog@cab.cnea.gov.ar
mailto:kuperman@cab.cnea.gov.ar
https://doi.org/10.1016/j.physa.2017.12.071


A. Chacoma et al. / Physica A 495 (2018) 152–161 153

enhancing communication between agents of similar opinion. They also find that the rewiring process can lead to the
elimination of interactions between agents with different opinions, accelerating the convergence to a consensus state but
breaking the network into non-interacting groups. Another example worth mentioning is [11], where by means of the
analysis of the Sznajd Model in one dimension they show that the transition rates towards a given opinion are directly
proportional to the frequency of the respective opinion of the second-nearest neighbors.

This consensus dynamics has been also studied analytically, for instance, in [12–14], where it is proposed that each agent
alters its opinion according to some weighted average of the rest of system. It is found that if all the recurrent states of
the Markov chain communicate with each other and are aperiodic, then a consensus is always reached. In most of the
existingmodels the update of opinions takes place via a linearmechanism [15–17].Moreover, they do not usually analyze the
influence of the network topology. Although see, for instance, [8], where a complex network appears as a substrate of a set of
agents with linear dynamics and [18], where the topology of the network is altered by the interactions between the agents.
The structure of the complex networks has been extensively studied from the point of view of transfer of information. A lot
of emphasis has been put on the influence of topology, studying for instance whether scale-free networks are more efficient
than regular ones [19]. In this context it has been shown, for instance, that it is very important whether the network consists
of homogeneous nodes or it has a structure of routers and peripheral nodes. Another important aspect is the clustering of
the nodes, because the presence or absence of loops could affect information transfer [19]. For instance, in networks with
modular structures, it has been shown that the velocity of the information propagation depends non linearly on the number
of modules. A piece of information will propagate faster for networks having either a small number or a large number of
modules [20].

A set of interacting agents on a network can give rise to a dynamically changing local environments where the process
of interchange of opinions takes place. In this paper we focus on three aspects: (1) How the local interaction rules control
the convergence to consensus, in particular we analyze both linear and non-linear rules. (2) What is the influence of the
dynamics of the agents in the network. We first consider the propagation of the information by considering a naïve strategy
for neighboring node selection. If the target node is not among the neighbors, a neighboring node is selected at random
for the trajectory of the agent. Then we consider a preferential choice strategy, where the agents are more likely to move
to more connected nodes. (3) What is the effect of the different parameters of the network topology, such as clustering or
assortativity. In the following sections we present the model in more details and a description of our results.

2. Network topologies

Throughout thisworkweuse several families of networkswith different topologies and algorithmic constructions, though
always containing the same number of nodes and links.

Regular small world networks:. We consider first regular networks with a tuned degree of disorder, and consequently
different degrees of clustering and mean path length. We recall that the clustering coefficient measures the tendency of
the nodes to cluster together and can be locally characterized by the fraction of existent links between nodes in a given node
neighborhood to the number of links that could possibly exist between them [21]. The mean path length is the averaged
path length between all the nodes in the network. The path length is defined as the minimum number of links needed to
navigate from one initial node to the final one.

Regular Small World networks are built using a modified algorithm based on the originally proposed in [21] to constrain
the resulting networks to a subfamily with a delta shaped degree distribution. We call this family of networks the k-Small
World Networks (k-SWN) [22], where 2k indicates the degree of the nodes. The building procedure starts with an ordered
regular network whose order is broken by exchanging the nodes attached to the ends of two links in a sequential way.
Starting, for example, from an ordered ring network, each link is subject to the possibility of exchanging one of its adjacent
nodes with another randomly chosen link with probability pd. If the exchange is accepted, we switch the partners in order
to get two new pairs of coupled nodes. Double links are always avoided, thus if there is no way to avoid a double link
with the present selection of nodes, a new choice is done. In this way all the nodes preserve their degree while the process
of reconnection assures the introduction of a certain degree of disorder. It must be stressed that the dependence of the
clustering coefficient C and path length L on the disorder parameter is qualitatively similar to the one observed in Small
World Networks [21]. In this way we can evaluate the effects of clustering and path length independently of the degree
distribution.

Small world networks:. To include the possible effects of the degree distribution on the analyzed dynamics we consider then,
the usual algorithm described in [21], where only one link is rewired at a time, maintaining the attachment to one of the
adjacent nodes and randomly connecting the other extreme. These networks not only possess different degrees of clustering
and mean distance but also different binomial degree distributions, linked to the disorder parameter pd, that measures the
probability of changing the extremes of each link. The degree distribution of these networks changes from deltiform to
binomial at the moment of introducing the slightest disorder. The associated binomial distribution is given by [23]
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