
Information Systems 74 (2018) 40–52

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Discovering hidden dependencies in constraint-based declarative

process models for improving understandability

Johannes De Smedt a , b , ∗, Jochen De Weerdt a , Estefanía Serral a , Jan Vanthienen

a

a KU Leuven Faculty of Economics and Business, Department of Decision Sciences and Information Management, United Kingdom

b University of Edinburgh Business School, Management Science and Business Economics Group, United Kingdom

a r t i c l e i n f o

Article history:

Received 4 October 2016

Revised 24 October 2017

Accepted 15 January 2018

Available online 31 January 2018

Keywords:

Declarative process modeling

Declare

Hidden dependencies

Constraint-based process models

Model comprehension

Empirical research

a b s t r a c t

Flexible systems and services require a solid approach for modeling and enacting dynamic behavior.

Declarative process models gained plenty of traction lately as they have proven to provide a good fit for

the problem at hand, i.e. visualizing and executing flexible business processes. These models are based

on constraints that impose behavioral restrictions on process behavior. Essentially, a declarative model is

a set of constraints defined over the set of activities in a process. While allowing for very flexible process

specifications, a major downside is that the combination of constraints can lead to behavioral restrictions

not explicitly visible when reading a model. These restrictions, so-called hidden dependencies, make the

models much more difficult to understand. This paper presents a technique for discovering hidden depen-

dencies and making them explicit by means of dependency structures. Experiments with novice process

modelers demonstrate that the proposed technique lowers the cognitive effort necessary to comprehend

a constraint-based process model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Declarative process models (DPMs) have been proposed to

counter the limitations of procedural modeling languages to rep-

resent and execute processes flexibly [1,2] , a desirable feature that

is of importance in application areas such as healthcare [3] or

services [4] . Instead of modeling predetermined paths of activi-

ties, declarative process models typically use constraints or rules

to express what can, cannot, and must happen. Every execution

sequence that is not strictly forbidden by the constraints can be

enacted by the model, which makes it very flexible. Many execu-

tions are possible due to the interaction of the constraints over the

activities. However, each type of constraint can have distinctive ef-

fects on the enabledness of an activity, creating dependencies that

are not explicit or visible in the graphical model or even in the ex-

ecution semantics. The dependencies between constraints and ac-

tivities that are not explicit or visible in the model [5–7] are so-

called hidden dependencies and make declarative models difficult

to comprehend [6,8] .

This paper proposes a technique capable of revealing hidden

dependencies in constraint-based declarative process models by

∗ Corresponding author at: University of Edinburgh Business School, Management

Science and Business Economics Group, United Kingdom.

E-mail addresses: Johannes.DeSmedt@kuleuven.be , Johannes.DeSmedt@ed.ac.uk

(J. De Smedt).

propagating the constraints’ properties through the activities of a

model and builds upon the prior work in [9] . It extends this work

by explicitly addressing how constraints propagate their restric-

tions over activities, as illustrated in Section 3 , and forms the back-

drop for building dependency structures for the whole model. They

then are used to visualize the dependencies, as well as create tex-

tual annotations. In this way, the paper addresses two suggestions

for improvement that were found in the user study performed in

[6] , i.e. ‘Simplify combination on constraints’ by introducing an ex-

tra layer of annotation that explains their relations, and ‘Make hid-

den dependencies explicit’ by capturing them in a visual model

and textual annotations. The technique has been implemented for

the Declare language [10] , one of the most-widely used declarative

process languages, and is implemented in the newly-developed De-

clare Execution Environment, 1 a tool that supplements an exist-

ing Declare model with visual and textual annotations and shows

which behavior is allowed or disallowed by the model and why.

The technique has been tested in an empirical evaluation in

which 146 novice modelers participated. The results are reported

in greater detail with a more in-depth statistical analysis using

more factors, and a bigger sample than in [9] . The evaluation

shows that hidden dependencies pose a significant burden for the

modelers to understand the full behavior of a model, and demon-

1 http://www.processmining.be/declareexecutionenvironment .

https://doi.org/10.1016/j.is.2018.01.001

0306-4379/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2018.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2018.01.001&domain=pdf
mailto:Johannes.DeSmedt@kuleuven.be
mailto:Johannes.DeSmedt@ed.ac.uk
http://www.processmining.be/declareexecutionenvironment
https://doi.org/10.1016/j.is.2018.01.001

J. De Smedt et al. / Information Systems 74 (2018) 40–52 41

strates that our technique actually has an impact on the cognitive

complexity and improves the understandability of declarative pro-

cess models by uncovering these dependencies. Using the proposed

technique, modelers were better capable of getting a holistic view

on the model they had to interpret, and were better capable of an-

swering questions regarding the behavior of the model correctly.

The structure of the paper is as follows. First, in Section 2 ,

the concept and background of DPMs are summarized and rele-

vant characteristics are explained. In Section 3 , the concept of a

constraint-based DPM and the constraint propagations in Declare

are formalized. In Section 4 , the construction of constraint depen-

dency structures is elaborated on. In Section 5 , the tool is intro-

duced which we developed to implement the ideas. Section 6 re-

ports on the results of an experiment performed on users of the

tool, and Section 7 concludes the paper with an overview of the

results and future work.

2. State-of-the-art

In this section, the state-of-the-art of declarative process mod-

els and the research on their understandability is discussed.

2.1. Languages and approaches

There exist numerous types of declarative process modeling

languages in literature. The term surfaced with the proposal of

EMBrA

2 CE [2] , DecSerFlow, and Condec [1,11] . The former proposes

an extension of Semantics and Business Rules Vocabulary [12] to

model business processes, while the latter proposed a framework

grounded in Linear Temporal Logic (LTL)-based constraints and

later was transformed into the Declare language [10] . A similar

approach was followed for DCR Graphs [13] , a framework also

based on a set of constraints, which is smaller but when used in

a composite way offers at least the same expressiveness as LTL

[14] . These contributions focus mainly on the control flow, though

data-aware extensions exist, e.g., [15] . Other research focuses on

a declarative specification of artifacts, including Guard Stage Mile-

stone [16] . In recent years, however, Declare has seen the biggest

surge in terms of research interest in many application areas such

as process mining [17] , application development [18] , and process

verification [19] . Therefore, it will be used to illustrate the exam-

ple in this work. Other languages also support Declare for model

checking as well, i.e. in SCIFF [4] . As a framework, it aims to sup-

port different semantics besides LTL, such as regular expressions

[20,21] , and R/I-nets [22] . Furthermore, the template base is ex-

tensible, allowing Declare to support any constraint that can be

defined with the same semantics. An overview of the Declare se-

mantics in LTL and regular expressions are given in Table 1 .

Declare uses a graphical notation that depicts activities as boxes

and constraints as edges of various types. All such edges are an-

notated with their respective name, except for unary activities for

they are either similar to cardinalities, or contain the constraint

name. A major downside of the framework however, is that the

graphical notation and execution model are separated. This down-

side was overcome in DCR Graphs by representing the states ex-

plicitly in the form of markings.

2.2. Understandability of declarative process models and hidden

dependencies

The departure of defining explicit control flow as in Business

Process Model and Notation [23] or Petri nets [24] , has urged a

number of researchers to study the understandability and usability

of DPMs in general. In [8,25] , the comparison with the procedu-

ral process modeling paradigm was made in order to get a grasp

on the benefits and downsides of using either approach, especially

from the viewpoint of the reader and modeler. A case study with

practitioners showed that, rather than using a full declarative ap-

proach, a hybrid approach suits interests best [26] . Since the con-

trol flow in declarative models is often underspecified, there is a

vast number of execution scenarios which might impede the user’s

understanding of the actual behavior of a DPM. An investigation

into the size and understandability of models was performed using

the Alaska Simulator in [27] , which presents a process as a jour-

ney and was used in a user study for solving planning problems.

Later, a test suite for DPMs was introduced in [7,28] , looking into

how users and modelers make use of the interplay and changes

of constraints in a model. A comprehensive study of the under-

standability factors, the notation, usage of hierarchy [29] , and in-

terpretation strategies of users, was performed in [30] . In the latter

works, it became apparent that hidden dependencies and the inter-

play of constraints clearly impede the understandability and raise

the cognitive load of the reader and modeler. A hidden dependency

in software was defined in [5,31] as ‘a relationship between two

components such tat one of them is dependent on the other, but

that the dependency is not fully visible’. They raise cognitive com-

plexity [32] due to intertwining parts of software, and often are

urged to be added visually to raise understandability [33] .

2.3. Alleviating understandability issues: discovering hidden

dependencies

As will be illustrated below, hidden dependencies arise in DPMs

when activities propagate their cardinalities, or are prevented from

executing at a certain point in time, i.e., by negative constraints in

Declare or exclude relations in DCR Graphs. In this paper, mitiga-

tion is sought for by making all dependencies between constraints

that are not explicit in the model itself (i.e. hidden) visible in the

form of textual annotations and dependency graphs. This approach

is general to the extent that new constraints in any type of se-

mantics can be added, as long as the basic principles of constraint-

based models listed are followed.

3. Preliminaries

In this section, the concept of a DPM and its constraints is for-

malized.

3.1. Constraint-based declarative process models

A declarative process model DM = (A, �) can be defined as fol-

lows.

– A is a set of activities or atomic propositions from the alphabet

�,

– �(A) is a set of constraints defined over the activities,

– §(π), π ∈ � is a function assigning semantics to a constraint,

and

– � =

∧

π∈ � § (π) is the model comprised of the conjunction of

constraints, given that the language used to express the con-

straints is closed for common properties such as concatenation,

intersection, Kleene star, and so on, as is the case for regular

expressions and LTL.

For every activity a ∈ A and timestamp t ∈ N , we define

– L : (a, t) → N the lower bound of the amount of occurrences of

an activity at time t ,

– U : (a, t) → N the upper bound of the amount of occurrences of

an activity at time t ,

– E : (a, t) → {0, 1} a function keeping track of the enabledness of

an activity at time t ,

– O : (a, t) → {0, 1} a function indicating whether an activity fired

at time t , and

https://isiarticles.com/article/134579

