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A B S T R A C T

Companies increasingly employ dual-channeling strategies with online and offline channels to reach customers.
The combination of high return rates in e-commerce and the possibility for customers to return products ordered
online at any offline store may result in unbalanced inventories. Transshipments can be used to deal with these
unbalanced inventories. In this paper we study dynamic policies for transshipment of products that are returned
cross-channel from online to offline stores. At the end of each period in a finite sales season, cross-channel
returned products can be transshipped back to the online store or kept on-hand at the offline store. Optimal
transshipment policies are obtained using a Markov decision process. We introduce a well-performing heuristic
based on the expected costs during the sales season, with a maximum deviation of 1.59% from the optimal costs in
experiments. Furthermore, we show that in all instances our heuristic outperforms static policies in which
products are either always or never shipped back to the online store. We observe that dynamic transshipment
policies are more effective than static policies in dealing with imbalances in the initial stock. Dynamic trans-
shipment of cross-channel returns seems to open up possibilities for more effective demand fulfillment of dual-
channel companies.

1. Introduction

Dual-channeling is a distribution strategy increasingly applied by
business-to-consumer companies in practice (Agatz et al., 2008). A com-
mon configuration for dual-channeling uses separate inventories from
offline stores and online stores to meet customer demands for products.
Products demanded from the online store are sent to the customer from a
distribution center. After buying, customers can often return products to
the company. Return percentages of as much as 75% have been reported
for some product categories in fashion (Mostard and Teunter, 2006).
Products are predominantly returned due to either buyer's remorse or an
unclear motivation not related to the state of the product (Lawton, 2008).
Some companies selling consumer electronics or clothing provide cus-
tomers the opportunity to return products at any store, regardless of where
they were bought originally. These products can be resold in the store they
are returned at. The vast majority of cross-store returns are products or-
dered from the online channel and returned by a customer to a nearby
store of the offline channel. In practice, typically all cross-channel returns
are shipped back to the distribution center of the online channel, poten-
tially incurring more transportation costs than necessary. On the other
extreme, if no products are shipped back, imbalances in the inventories of
the two channels may occur.

By carefully coordinating the transshipment of cross-channel returns,
companies can increase the availability of products during the sales
season. For both types of channels, demand is typically lost to competi-
tors if a customer encounters an out-of-stock situation. Some stock may
be unsold at the end of the sales season, incurring costs because products
have to be disposed of or sold at a discount. Efficient transshipment
policies should determine when the transportation cost weigh up against
the costs of unsold products.

In this paper, we study the transshipment of returned products in a
dual-channel supply chain for a product that is sold during a single sales
season consisting of multiple periods. Sold products return to the store
they are sold from with some probability, i.e., returns depend endoge-
nously on fulfilled demand. Moreover, products sold in the online
channel return cross-channel to stores of the offline channel with a
certain probability. At the end of every period, these cross-channel
returns can either be added to the inventory of the offline store, or sent
back to the distribution center. Returned products are assumed to be as
good as new and can be resold at full price. The goal is to minimize costs
during the sales season, which comprise of costs for holding stock, car-
rying out transshipments, and having unsold stock at the end of the sales
season. Using Markov decision processes, we study optimal trans-
shipment policies during the sales season. Furthermore, we formulate a
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transshipment heuristic, which we compare to the optimal policy and
static policies typically used in practice. Our heuristic is shown to
outperform these static policies considerably, showing the potential of
dynamically determining the transshipment of returns.

Lateral transshipments can either take place at predetermined mo-
ments in time or in reaction to stock-outs. The former are called proactive,
whereas the latter are called reactive (Paterson et al., 2011). Recent ex-
amples of papers studying reactive transshipments are Axs€ater et al.
(2013), Howard et al. (2015), and Olsson (2015). Hybrid lateral trans-
shipments, which combine proactive and reactive lateral transshipments
are studied by Paterson et al. (2012) and Glazebrook et al. (2015). Since
the primary purpose of the transshipment of cross-channel returned
products is preventing stock-outs, they are proactive lateral trans-
shipments. Furthermore, as products are transshipped from offline stores
to the online store, the transshipments are unidirectional (Axs€ater, 2003).

Models studying lateral transshipments consider either a finite or an
infinite horizon. Policies for models with a finite horizon mainly focus on
situations with a single transshipment opportunity. A number of heu-
ristics have been proposed to determine transshipment quantities in such
situations (see, e.g., J€onsson and Silver, 1987; Bertrand and Bookbinder,
1998; Agrawal et al., 2004). Optimal transshipment quantities can be
determined for models consisting of a single period with a single trans-
shipment decision (see, e.g., Noham and Tzur, 2014). Our model differs
in that we study a situation in which transshipment is possible in every
period during the finite horizon. This implies that we cannot determine
transshipments by considering the remaining periods after the trans-
shipment in isolation, which is a key characteristic of the previously
studied models. In a finite model, allowing multiple transshipment op-
portunities leads to an optimal policy with a distinct structure
(Abouee-Mehrizi et al., 2015). However, it is unclear whether this
structure still holds when cross-channel returns are possible and only a
part of the inventory can be transshipped. A simulation-optimization
approach to obtain a transshipment policy with a fixed threshold levels
is proposed by Hochmuth and K€ochel (2012). Fixed threshold levels are
unlikely to work for our situation, as the number of remaining periods is
an important factor in determining whether or not to ship a cross-channel
returned product (Abouee-Mehrizi et al., 2015).

In an infinite horizon setting, papers considering multiple trans-
shipment opportunities typically use balancing heuristics, in which stock
levels are compared to future demand in some way (Banerjee et al., 2003;
Lee et al., 2007). These balancing policies typically do not depend on cost
parameters, which can influence their performance (Lee et al., 2007). Liu
et al. (2016) show that a myopic rebalancing policy is optimal for a
pooled virtual stockpile. However, such a policy is unlikely to be optimal
for other transshipment problems (Abouee-Mehrizi et al., 2015). Firouz
et al. (2016) use simulation-optimization to solve a stochastic MILP to
determine transhipment quantities. None of the above finite and infinite
horizon articles consider returns, and extending these models to
accommodate for returns is not straightforward.

Returns can be in an as-good-as-new condition, meaning that they are
resalable, or they can be damaged, requiring an extensive refurbishing or
remanufacturing process. The latter is studied in reverse logistic models
(Fleischmann et al., 1997; Tai and Ching, 2014). In our setting the pre-
dominant reason for returning are not defects. Therefore, we study
resalable returns. Resalable return models have been studied in settings
with a single location andmultiple locations. Returns are modelled either
as an independent exogenous process, or as an endogenous process
depending on fulfilled demand. Single location settings with dependent
returns include Kelle and Silver (1989), Buchanan and Abad (1998), and
Mostard and Teunter (2006). Kiesmüller and Van der Laan (2001) show
that the stock processes under independent and depend returns differ
substantially, especially in case of high return rates. To the best of our
knowledge, papers studying multiple locations with resalable returns
only consider independent return processes (see, e.g., Ching et al., 2003;
Mitra, 2009). As high return rates are common in practice, in this paper
we study a setting with multiple stock locations and a dependent return

process. Since future returns depend on the availability of stock, trans-
shipment decisions should account for this.

The remainder of the paper is organized as follows. In x2, we intro-
duce the model and assumptions. In x3, we formulate an MDP for
obtaining the optimal policy. We develop a heuristic in x4 and compare it
with the optimal policy and heuristics from practice in x5. Finally, in x6
we provide conclusions and directions for future research.

2. Problem definition

We consider the inventory control of a single product for a dual-
channel company which sells through online and offline channels. The
online channel consists of one online store (distribution center), indexed
i ¼ 0, and the offline channel consists of n offline stores, indexed
i ¼ 1;…; n. The product is sold during a sales season with duration T. At
the beginning of the sales season (period 1), the stores have initial in-
ventory I1 ¼ ðI11;…; I1nÞ. Each period t; t ¼ 1;…;T, store i faces generally
distributed non-negative demand Dt

i with mean λti . Demand in excess of
the on-hand inventory is lost.

Each item sold during a period has a probability of being returned in
that same period, analogous to Mostard and Teunter (2006). Products
returned in a period are resalable in the next period. There are regular
returns and cross-channel returns. Regular returns return to the online or
offline store from which they were sold, with a probability 0 � pii <1 for
each sold item at store i; i ¼ 0;…; n. Cross-channel returns are items sold
in the online store and returned to one of the offline stores. A sold item at
the online store returns to offline store i; i ¼ 1;…; n with probability p0i.
Clearly, we require 0 � p00 þ

Pn
i¼1p0i <1.

Stock levels are reviewed at the beginning of each period t, and are
denoted It. After each review, transshipments can be carried out. We are
allowed to transship (part of) the cross-channel returns at offline store i
from the previous period back to the online store. As transshipments are
typically carried out overnight, the lead time of transshipments is
assumed to be negligible. At the end of the period, demand is observed
and fulfilled to the extent possible from on-hand stock. Finally, inventory
costs are incurred at the end of the period.

The costs are as follows. Transshipment between store i and store j
costs cij per unit. Clearly, we have cii ¼ 0. Moreover, we have
cij ¼ ∞ if i ≠j and j ≠ 0, which implies that cross-channel returns can
only be transshipped to the online store. In a model extension we later
relax this assumption and allow transshipments between offline stores. A
holding cost h is incurred for each unit on-hand at the end of the period.
We do not consider a direct penalty cost for lost demand. Since the goal of
the company is to sell as much as possible of the remaining inventory
during a finite sales season, instead a penalty s is incurred for each unsold
unit of stock by the end of period T. For our purpose of optimizing
transshipment policies, unsold inventory and lost demand costs are
functionally equivalent, because each extra unit of lost demand pre-
vented by a certain policy results in one less unsold unit at the end of the
sales season. Hence, one can take a similar approach to setting s for a
practical setting as in standard lost-sales models, see e.g., Zipkin (2008).

We aim to find a transshipment policy that minimizes costs during the
sales season. Even though we consider a single sales season, our model
extends to the case with replenishments when the replenishment policy
and transshipment policy are set independent from each other, as in, e.g.,
Banerjee et al. (2003) and Lee et al. (2007). Nonetheless, a finite model
without replenishments is realistic when fashion companies are consid-
ered. In that case, long lead-times lead to single batches being ordered for
the entire sales season (Mantrala and Raman, 1999; Mostard and
Teunter, 2006; Caro and Gallien, 2012).

3. Markov decision process

In order to solve the problem to optimality, we formulate a Markov
decision process (MDP). In what follows we provide the state space, the
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