Conic Relaxations of the Unit Commitment Problem

Salar Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk¹

University of California, Berkeley

Abstract

The unit commitment (UC) problem aims to find an optimal schedule of generating units subject to demand and operating constraints for an electricity grid. The majority of existing algorithms for the UC problem rely on solving a series of convex relaxations by means of branch-and-bound and cutting-planning methods. The objective of this paper is to obtain a convex model of polynomial size for practical instances of the UC problem. To this end, we develop a convex conic relaxation of the UC problem, referred to as a strengthened semidefinite program (SDP) relaxation. This approach is based on first deriving certain valid quadratic constraints and then relaxing them to linear matrix inequalities. These valid inequalities are obtained by the multiplication of the linear constraints of the UC problem, such as the flow constraints of two different lines. The performance of the proposed convex relaxation is evaluated on several hard instances of the UC problem. For most of the instances, globally optimal integer solutions are obtained by solving a single convex problem. For the cases where the strengthened SDP does not give rise to a global integer solution, we incorporate other valid inequalities. The major benefit of the proposed method compared to the existing techniques is threefold: (i) the proposed formulation is a single convex model with polynomial size and, hence, its global minimum can be found efficiently using well-established first-and second-

¹The authors are with the Department of Industrial Engineering and Operations Research, University of California, Berkeley (e-mail: fattahi@berkeley.edu, ashraphijuo@berkeley.edu, lavaei@berkeley.edu, atamturk@berkeley.edu). This work was supported by DARPA YFA, ONR YIP Award, AFOSR YIP Award, NSF CAREER Award 1351279 and NSF EECS Award 1406865. A. Atamtürk was supported, in part, by grant FA9550-10-1-0168 from the Office of the Assistant Secretary of Defense for Research and Engineering.

Preprint submitted to Energy May 15, 2017
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات