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a b s t r a c t 

We consider a Cournot duopoly with isoelastic demand function and constant marginal costs. We assume 

that both producers have naive expectations but one of them reacts with delay to the move of its com- 

petitors, due to a “less efficient” production process of a competitor with respect to its opponent. The 

model is described by a 3D map having the so-called “cube separate property”, that is its third iterate 

has separate components. We show that many cycles may coexist and, through global analysis, we char- 

acterize their basins of attraction. We also study the chaotic dynamics generated by the model, showing 

that the attracting set is either a parallelepiped or the union of coexisting parallelepipeds. We also prove 

that such attracting sets coexist with chaotic surfaces, having the shape of generalized cylinders, and with 

different chaotic curves. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In 20 0 0, Bischi et al. [5] have studied a class of two- 

dimensional discrete maps having the property that their second 

iterate is a decoupled map. The essential result of such a study is 

that the dynamic properties of this kind of maps can be deduced 

from the simple analysis of a components of their second iterate, 

a one-dimensional map. More recently, Agliari et al. [4] have ob- 

tained analogous results considering a three-dimensional family of 

maps having third iterate with separate components. A typical fea- 

ture of such maps is the coexistence of many invariant orbits, so 

that multistability situations are recurring. In the 3D case, for ex- 

ample, it is sufficient that the related 1D map has a cycle of pe- 

riod 2 to obtain two coexisting cycles for the starting map. And 

the same holds when chaotic dynamics are involved. 

During the last years, many applications to Cournot duopoly 

have been studied, considering the quantity adjustment over time 

based on a two-dimensional map with separate second iterate (see, 

among others, [5,11,12] ). Indeed “square separate maps” naturally 

arise when producers have naive expectations. 

In the present paper, we consider a Cournot model in which 

producers have naive expectations about the production of the 

competitor, but one of them reacts with delay to the move of its 
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competitor. From an economic point of view such an assumption 

can be justified by the fact that one of two competitors has a 

“slower” production process, meaning that its production process 

is technologically less advanced and consequently requires a longer 

time to react to the market demand. Stated in other words, we can 

say that a competitor has a production process based on a tech- 

nology “less efficient” that its opponent. 

Recently many authors have studied Cournot duopoly model 

with delay; in particular they have considered markets with mem- 

ory, that is the expected quantity is a weighted average of the past 

quantity observations (see for example [6,7,13] ). Here the frame- 

work is completely different, since we focus on the “delayed pro- 

duction” of a competitor. 

The model under scrutiny is described by a discrete 2D time- 

delayed system , that can be rewrite as a 3D map M with the “cubic 

separate property” , that is, its third iterate has separated com- 

ponents. Our aim is to perform a global analysis of the model, 

characterizing the basin of attractions of the different coexisting 

attractors. Moreover, we shall extend the results in [4] , deepen- 

ing the study of the chaotic attractors of M . In particular, we shall 

analytically show that the three-dimensional chaotic sets (paral- 

lelepipeds) coexist with chaotic surfaces, given by union of gen- 

eralized cylinders, and with chaotic curves. 

The rest of the paper is organized as follows. In Section 2 we 

introduce the model describing the time evolution of the produc- 

tion levels of the two firms. We obtain a 3D map having third iter- 

ate with separate components. Then, for convenience of the reader, 

we recall some results achieved by Agliari et al. (see [4] ) related to 
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this kind of maps. In Section 3 we show that the model exhibits 

multiplicity of cycles and characterize their basins of attraction. In 

Section 4 , extending the results of Agliari et al. [4] , we study the 

chaotic attractors (parallelepileds), showing that they coexist with 

many chaotic surfaces and curves. Section 5 concludes. 

2. The model 

We consider a Cournot duopoly in which two competitors pro- 

duce perfect substitute goods. Following Puu [11] , we assume an 

isoelastic demand function and constant marginal costs. Denoting 

by x and y the supplies of the competitors, the profits are given 

by 

�1 = 

x 

x + y 
− ax , �2 = 

y 

x + y 
− by 

where a and b are the constant marginal costs and, consequently, 

positive parameters. 

The Cournot–Nash reaction functions of the two firms depend on 

the expected production of the opponent and are given by: 

r 1 
(
y (e ) 

)
= arg max 

x 
�1 

(
x, y (e ) 

)
= 

√ 

y (e ) 

a 
− y (e ) 

r 2 
(
x (e ) 

)
= arg max 

y 
�2 

(
x (e ) , y 

)
= 

√ 

x (e ) 

b 
− x (e ) 

(1) 

defined in R + . 
We conjecture that the firms adopt a “learning by doing” ap- 

proach. Then in the time evolution of the production decisions, we 

assume that at each stage firms optimally decide following their 

reaction function, supposing that the production of the opponent 

remains the same. This means that the firms have naive expecta- 

tions. Furthermore, we assume that a producer reacts with delay to 

the move of its opponent: 

q (e ) 
1 ,t 

= q 2 ,t−1 and q (e ) 
2 ,t 

= q 1 ,t−2 

In this way we obtain a discrete two dimensional time-delayed 

system: {
x t+1 = 

√ 

y t 
a 

− y t 

y t+1 = 

√ 

x t−1 

b 
− x t−1 

(2) 

By means of the auxiliary variable z t = x t−1 , we can rewrite 

(2) as a three dimensional model: 

T : 

⎧ ⎨ ⎩ 

x ′ = 

√ 

y 
a 

− y 

y ′ = 

√ 

z 
b 

− z 

z ′ = x 

(3) 

where the symbol ’ denotes the unit time advancement operator, 

that is, if ( x, y, z ) represents the vector of choices at time t , then 

( x ′ , y ′ , z ′ ) gives the choices at time t + 1 . 

It is easy to see that the map (3) is not defined in the whole 

three dimensional phase-space. In fact the domain of T is the re- 

gion D given by: 

D = { (x, y, z) : y ≥ 0 , z ≥ 0 } 
We are interested in a subset of D , denoted by S , which consists 

in the points ( x, y, z ) for which we have T n ( x, y, z ) ∈ D , for any n ≥ 0. 

We shall call admissible such points and trajectories in S : 

S = { ( x, y, z ) ∈ D : T n (x, y, z) ∈ D ∀ n ≥ 0 } . 
Before starting the analysis of the map (3) in the phase-space 

D we show that the two marginal costs ( a, b ) are redundant 

parameters. This follows from the observation that the maps T 

with parameters ( a, b ) and 

˜ T with parameters ( τa, τb ) with τ > 0 

are topologically conjugate via the homeomorphism �(x, y, z) = 

( τx, τy, τ z ) , being T = � ◦ ˜ T ◦ �−1 or, equivalently, ˜ T = �−1 ◦ T ◦
�. In the present model we have: 

˜ T : 

⎧ ⎨ ⎩ 

x ′ = 

√ 

y 
τa 

− y 

y ′ = 

√ 

z 
τb 

− z 

z ′ = x 

Considering τ = 

1 
a and setting k = 

b 
a , we obtain the map: 

M : 

{ 

x ′ = 

√ 

y − y 

y ′ = 

√ 

z 
k 

− z 

z ′ = x 

(4) 

Due to topological conjugacy, the dynamics of the map T which 

depends on two parameters ( a, b ) and the dynamics of the map M 

which depends on a unique parameter, k , have the same qualita- 

tive behavior, because they are associated by a simple coordinate 

transformation (see, [2] ). In other words, through the topological 

conjugacy we have obtained a reduction in the number of param- 

eters of the map T in (3) , since only the ratio between marginal 

costs has to be considered. 

Henceforth, we take the analysis considering the map M in 

(4) and k ∈ (0, 1], assuming that producer 1 has higher marginal 

costs than its competitor. From an economic point of view, this 

choice can be justified assuming that the slow technology of pro- 

ducer 2 causes delayed reaction to the moves of its opponent but 

it is less expensive. 

2.1. Properties of “cube separate maps”

Related to the aim of the present paper, the fundamental prop- 

erty of the map M in (4) is that its third forward iterate has separate 

components, which we will call “cube separate property ”. Indeed the 

map in (4) belongs to the particular class of maps: 

� : 

{ 

x ′ = f ( y ) 
y ′ = g ( z ) 
z ′ = h ( x ) 

(5) 

and �3 n (x, y, z) = ( H 

n (x ) , F n (y ) , G 

n (z) ) , for each integer n ≥ 0, 

with H ( x ) = f (g(h (x ))) , F (y ) = g(h ( f (y ))) , G ( z ) = h ( f (g(z))) and 

F 0 , G 

0 , H 

0 identity functions. 

The family of map (5) has been studied by Agliari et al. (see, 

[3,4] ) and, for convenience of the reader, we recall here some re- 

sults, useful for the understanding of the subsequent analysis of 

the model. These results are based on the following relationships: 

for any n ≥ 1 the three one dimensional (1D) maps H, F and G sat- 

isfy: 
• h ◦ H 

n ( x ) = G 

n ◦ h ( x ) 
• g ◦ G 

n ( z ) = F n ◦ g ( z ) 
• f ◦ F n ( y ) = H 

n ◦ f ( y ) and 

• g ◦ h ◦ H 

n ( x ) = F n ◦ g ◦ h ( x ) 
• f ◦ g ◦ G 

n ( z ) = H 

n ◦ f ◦ g ( z ) 
• h ◦ f ◦ F n ( y ) = G 

n ◦ h ◦ f ( y ) . 

Such properties imply that the invariant sets of the 1D 

maps H, G and F are strictly correlated. As an example, 

we have that any n −cycle of the map H , { x 1 , x 2 , . . . , x n } ad- 

mits conjugated cycles , given by a n −cycle of the map G , i.e. 

{ z 1 , z 2 , . . . , z n } = { h ( x 1 ) , h ( x 2 ) , . . . , h ( x n ) } , and a n −cycle of the 

map F , i.e. { y 1 , y 2 , . . . , y n } = { g ( h ( x 1 ) ) , . . . , g ( h ( x n ) ) } . 1 We remark 

that conjugated cycles have all the same stability property, since 

their multipliers are equal. 

In the following we shall consider the map H to study the at- 

tractors of � as well as their stability properties. 

1 Obviously, the same result holds starting from a cycle of G (or F ). 
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