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In this paper we compute topological entropy with prescribed accuracy for different economic mod- 

els, showing the existence of a topologically chaotic regime for them. In order to make the paper self- 

contained, a general overview on the topological entropy of continuous interval maps is given. More 

precisely, we focus on piecewise monotone maps which often appear as dynamical models in economy, 

but also in population growth and physics. Our main aim is to show that when topological entropy can 

be approximated up to a given error, it is a useful tool which helps to analyze the chaotic dynamics in 

one dimensional models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Chaos is a very popular notion of study for both theoretical 

and practical scientists and many models from natural and social 

sciences have been analyzed showing the existence of so–called 

chaotic behavior. In most cases, this chaotic behavior is shown by 

using numerical simulations made by computer without any error 

control. Nevertheless, these models and the simulations made to 

understand their dynamics, offer a wide field of study for math- 

ematicians interested in giving more accurate and consistent ap- 

proaches to model dynamics, which is not generally easy. 

In the conference “100 years after Poincaré” held in Gijón 

(Spain), 1 J. A. Yorke, one of the fathers of chaos theory gave a con- 

ference entitled “the many facets of chaos”. He argued that we 

should study chaos from different points of view using different 

techniques: topological, statistical and others, to have a clearer vi- 

sion of chaos. For instance, Li and Yorke chaos [27] is a topolog- 

ical notion which sometimes is not physically observable. A well- 

known example of this is a smooth enough unimodal interval map 

with positive entropy 2 and negative Schwarzian derivative that has 

a periodic orbit as its attractor. It is clear that such examples make 

chaos theory both rich and often “confusing”, especially for biolo- 

gists and economists. 

∗ Corresponding author. 

E-mail address: maria.mg@upct.es (M. Muñoz-Guillermo). 
1 http://www.unioviedo.es/ds100Poincare. 
2 Positive topological entropy is often taken as a definition of chaos and among 

others implies the existence of Li and Yorke chaos [7] . 

In this paper, we highlight the fact that topological entropy can 

be computed with prescribed accuracy to analyze the chaotic be- 

havior of dynamical systems given by some economic models, go- 

ing further than the numerical estimations that are usually taken 

and considered as true, even when error analysis is not carried 

out. So the reliability of simulations is omitted in most cases sim- 

ply assuming the veracity of the results. However, its study de- 

serves more attention, see for example [28] . We must point out 

that models usually depend on parameters and our main aim is 

to show that topological entropy can be a useful tool to provide 

confident parameter regions where chaos is possible. Although or- 

bits are used to compute topological entropy, the orbit length is 

at most 20 0 0 points and so, rounded off effects should not have a 

significative influence on the final result. 

Topological complexity is not always physically observable. The 

reason comes from the fact that complex behavior can exist but 

only in a set of Lebesgue measure equal to zero, which means 

that numerical simulations show a simple behavior with probabil- 

ity equal to one. In this paper, “complex behavior” means “topo- 

logical complex behavior”, which is different from the statistical 

properties of the dynamical system. The estimations that we make 

with prescribed accuracy are different from rigorous computations 

with prescribed accuracy in which numerical errors and rounding 

are considered. Thus, we have to distinguish between topological 

complexity, physically observable complexity and observed com- 

plexity when we make numerical simulations, see [21] . Neverthe- 

less, the real possibilities of estimating topological entropy versus 

other notions such as Kolmogorov–Sinai entropy with greater con- 

straints, [22] , makes it a source of valuable information for study- 

ing dynamical systems. 
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Let us point out that there are rigorous numerical methods 

which are free from orbit computation (see [21,22] ), which, espe- 

cially in the case of chaotic systems, can affect the results when 

the orbit length is big enough. Clearly, these “orbit-free numeri- 

cal methods”, which allow the computation of statistical properties 

of dynamical systems as invariant measures or metric entropy, are 

more rigorous than those that use orbits. In our opinion, devel- 

oping effective numerical methods that allow us to compute the 

topological entropy approximately without computing the orbits 

will be very interesting. 

The paper is organized as follows. In Section 2 we introduce 

the notion of topological entropy and its relationship to chaos. 

Section 3 is devoted to the computation of the topological entropy 

in a theoretical way. We emphasize results related with piece- 

wise monotone maps which appear in a natural way in economic 

models. In Section 4 , we show numerical methods used to com- 

pute the topological entropy with a prescribed accuracy. Finally, in 

Section 5 , some applications to economic dynamics are shown. In 

particular, we present some models, depending on one or several 

parameters, for which topological entropy is useful in order to de- 

cide the parametric region where chaos can be found. 

2. Topological entropy and chaos 

The mathematical notion of entropy has its roots in physics. In 

thermodynamics, entropy is a measure of the number of ways in 

which a thermodynamic system may be arranged, often taken as 

a measure of disorder [18] . However, Shannon [39] introduced en- 

tropy in the frame of information theory. In these terms, “entropy 

is a statistical parameter which measures in certain sense, how much 

information is produced on the average for each letter of a text in the 

language. If the language is translated into binary digits (0 or 1) in 

the most efficient way, the entropy H is the average number of binary 

digits required per letter of the original language”, [39] . Shannon’s 

entropy quantifies the expected value of the information contained 

in a message. 

Shannon’s notion of entropy was adapted in the setting of dis- 

crete dynamical systems. First, Kolmogorov and Sinai [25,40] in- 

troduced the metric or measure-theoretic entropy as follows. Let 

X be endowed with a probability measure μ on a σ -algebra of 

X and let T : X → X be a measure preserving transformation, that 

is, μ(A ) = μ(T −1 A ) for any measurable set A ⊆X . The entropy of T 

with respect to a measurable finite partition ξ = { C 1 , . . . , C k } is de- 

fined by 

h μ(T , ξ ) = lim 

n →∞ 

1 

n 

H μ(ξn ) = inf 
n ∈ N 

1 

n 

H μ(ξn ) , 

where ξn = ∨ 

n −1 
i =0 

T −i ξ is the partition of X by the sets 

C i 1 ∩ T −1 (C i 2 ) ∩ · · · ∩ T −(n −1) (C i n ) ,C i 1 , C i 2 , . . . , C i n ∈ ξn and H μ(ξn ) = 

−∑ 

C∈ ξn 
μ(C) log (μ(C)) . Then, metric entropy is defined as 

h μ(T ) = sup 

ξ

h μ(T , ξ ) . 

The underlying idea of metric entropy is to measure the speed 

with which the transformation T cuts smaller and smaller pieces 

under iteration. 

Related to the previous definitions of metric entropy we find 

an approximation for the notion of topological entropy. In fact, for 

continuous transformations on compact metric space, the so-called 

variational principle for topological entropy states that the supre- 

mum of the metric entropies over all invariant probability mea- 

sures of X is equal to the topological entropy, [42, Chapter 8] . Let 

us introduce the notion of topological entropy by means of topo- 

logical objects. 

Unless otherwise stated, throughout the paper we assume a dif- 

ference equation x n = f (x n −1 ) , where f : X → X is a continuous map 

on a compact metric space X . We can also speak of a discrete dy- 

namical system ( X, f ), which is the natural frame where topological 

entropy makes sense. So, the topological entropy is a non–negative 

number h ( f ) which measures the complexity of the map f , or the 

difference equation, or the discrete dynamical system ( X, f ). In fact, 

topological entropy measures the exponential growth rate of the 

number of orbits that can be distinguished as time increases. Two 

equivalent definitions of topological entropy have been given. One 

of them by Adler, Konheim and McAndrew (1965) [1] (using open 

covers) and the other by Bowen [11] (via separated and spanning 

sets). 

First, we introduce the notion by using open covers, which is 

similar some ways to metric entropy. For this, we do not need any 

metric on X , which has to be compact and Hausdorff. Let f : X → X 

be a continuous map and let A be a finite open cover of X . Then 

f −1 (A ) = { f −1 (A ) : A ∈ A} is an open cover. If B is another open 

cover of X , let A ∨ B = { A ∩ B : A ∈ A , B ∈ B} be the joining of A 

and B. The minimal cardinality of any subcover of X chosen from 

A is denoted by N (A ) . Now the definition by Adler, Konheim and 

McAndrew of topological entropy is as follows. 

Definition 1 (Adler, Konheim and McAndrew, [1] ) . Let f : X → X be 

a continuous map of a Hausdorff compact space X . Let A be a finite 

open cover of X . 

1. The topological entropy of f on A is 

h ( f, A ) = lim 

n →∞ 

1 

n 

log N 

( 

n −1 ∨ 

i =0 

f −i (A ) 

) 

. 

2. The topological entropy of f is h ( f ) = sup A h ( f, A ) . 

Topological entropy is invariant under conjugation, that is if f : X 

→ X and g : Y → Y are maps such that there is a homeomorphism 

φ: X → Y with φ ◦ f = g ◦ φ, then h ( f ) = h (g) , see [2, Chapter 4] . 

Now, we introduce Bowen’s notion with separated sets, skip- 

ping the equivalent definition for spanning sets that can be read 

in [11] . Here a metric on X is needed and, as we have already 

stated, Bowen’s and open cover’s definitions of topological entropy 

are equivalent when X is metric and compact. 

Definition 2 (Bowen, [11] ) . Let f : X → X be a continuous map of 

a compact metric space ( X, d ). For ε > 0 and n ∈ N , we say that 

the subset E ⊂ X is a ( n , ε)-separated set if for every x, y ∈ E, x � = 

y , there exists k , 0 ≤ k < n , such that d ( f k ( x ), f k ( y )) > ε. Then, the 

topological entropy of f , denoted by h ( f ) is defined to be 

h ( f ) = lim 

ε→ 0 

(
lim sup 

n →∞ 

1 

n 

log N(n, ε) 
)
, 

where N ( n , ε) is the maximum cardinality of a ( n , ε)-separated set. 

Thus, topological entropy measures the number of different or- 

bits of the system. Suppose we do not distinguish between points 

that are less than ε apart. Then N ( n , ε) represents the number of 

distinguishable orbits of length n , and if this number grows like ap- 

proximately e nh , then h is the topological entropy. 

Observe that in the definition of topological entropy only the 

metric d and the induced topology are involved in counting the 

number of orbits, while metric entropy takes its value from a set 

of full measure, being “blind” for zero measure sets. This notion 

is different from the notion of KS entropy, that measures the ex- 

ponential growth rate of statistical relevant distinguishable orbits 

respect to an invariant measure. A measure is also involved in the 

definition of Shannon entropy. In any case, a deeper look at the 

definitions is not necessary to see that computing topological en- 

tropy from the definitions is not generally easy. The question of 

finding methods to compute topological entropy was raised by rec- 

ognized mathematicians such as John Milnor [32] . 
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