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a b s t r a c t

As manufacturers face the challenges of increasing global competition and energy saving requirements, it
is imperative to seek out opportunities to reduce energy waste and overall cost. In this paper, a novel
data-driven stochastic manufacturing system modeling method is proposed to identify and predict en-
ergy saving opportunities and their impact on production. A real-time distributed feedback production
control policy, which integrates the current and predicted system performance, is established to improve
the overall profit and energy efficiency. A case study is presented to demonstrate the effectiveness of the
proposed control policy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Conventionally, improving production efficiency, flexibility and
responsiveness has been the primary research focus of production
management, while energy consumption has received little atten-
tion. As concerns mount about long-term energy availability and
climate change, energy consumption and energy efficiency
improvement are becoming companies' top issues.

To achieve the goal of reducing energy use from manufacturing
plants by twenty percent to fifty percent for the next three to ten
years [1], critical technical challenges must be solved. First, there is
a lack of rigorous modeling method for real-time system level
monitoring, identification and prediction of energy waste and en-
ergy saving opportunities. While information about production
systems has becoming increasingly transparent, detailed, and real-
time, the utilization of this information for energy efficiency
improvement and cost reduction has been lagging behind. The
traditional methodologies for production system analysis and
control are mostly based on steady state analysis and long-term
performance measurements. Hence, the advantage of detailed

sensor data, which is critical to improve responsiveness of the real-
time system control, is mostly ignored. The vast amounts of time
series data generated by distributed sensors have to be analyzed in
real-time and converted to actionable knowledge that can be fed to
process monitoring, control, and optimization algorithms [1]. The
challenge now is to disseminate and interpret the information
collaboratively through data-driven modeling for intelligent con-
trol such that the entire plant floor operations and energy con-
sumption are well coordinated, connected, and timely reconfigured
with the goal of achieving higher energy efficiency and sustain-
ability for the entire system.

Second, there is a lack of real-time intelligent control method for
manufacturing energy optimization. There is a long history of
research in control theory but the manufacturing domain has not in
general been a target for this research [1]. Consequently, most of
the current energy optimization and control methods focus on
heuristic rules or require computationally expensive time horizon
algorithms, such as dynamic programming algorithm, where an
optimal solution is obtained through an exhaustive numerical
search. This will seriously hinder the effectiveness of the control in
real-time advanced manufacturing environment. Due to the sto-
chastic and non-linear properties of production systems, it is a big
challenge to establish a control policy to enable a fast response to* Corresponding author.
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random disturbances and unexpected changes with the goal of
improving overall economic benefit and energy efficiency.

This paper is devoted to address the above challenges. The main
contributions of this paper are in: 1) establishing a data-driven
mathematical model through available sensor data; 2) developing
a system diagnosis and prognosis methodology based on the data-
driven model to identify and predict the system performance and
energy saving opportunities; 3) establishing a novel automated
distributed control scheme which integrates real-time feedback
control and collaborated control to improve overall system profit
and energy efficiency.

The rest of the paper is organized as follows: literature review is
provided in Section 2. Section 3 introduces the assumptions and
notations applied in the paper. In Section 4, amathematicmodel for
a continuous flow stochastic production system is developed. En-
ergy saving opportunity and system performance identification and
prediction are discussed in Section 5. Section 6 describes the
automated distributed control scheme based on the stochastic
model of the production system. Section 7 studies the energy and
production economics of the manufacturing system. A case study is
presented in Section 8. Finally, conclusions and future research are
given in Section 9.

2. Literature review

The existing production management studies are mostly
focused on improving production efficiency, flexibility, and
responsiveness [2e9]. There have been substantial research efforts
in the analysis of the production system dynamics and performance
evaluation [10e16]. Both simulation and analytical methods are
utilized to study the properties of production system. Computer
simulation is known to be a useful tool in analyzing the dynamics of
production system. However, it may suffer from long model
development time and intense computational effort to obtain
useful conclusions. For analytical methods, exact analytical results
only exist for the two-machine-one-buffer system and systems
with infinite buffer capacity or without buffers [10,11]. Decompo-
sition and aggregation methods are utilized with Markov chain
models to estimate the performance of longer lines and assembly
systems [10,12]. However, most of the existing analytical studies
evaluate the system steady-state performance and make optimi-
zations on long-term production system schedule plans [10,12,19].
Chen et al. derive the mathematical model and closed-form ex-
pressions for transient performance evaluation of synchronized
serial production lines with geometric machines [20]. However, the
method only provides some basic properties such as settling time
monotonicity, while the transient throughput and work-in-process
are actually derived based on approximation.

Recently, with the wide adoption of distributed sensors in pro-
duction systems, more real-time detailed sensing information is
available that is potentially very useful in identifying system real-
time performance [13,15e18,21,22]. Analysis of downtime impacts
and the cost of disruption incidents for multi-stage manufacturing
systems are studied in Refs. [13] and [16]. Reference [21] develops a
real-time disruption recovery model for two-stage production-in-
ventory systems to obtain the optimal recovery plan based on the
real-time influence of the system disruptions. However, these
studies mainly focus on real-time system diagnosis without further
prognosis for potential system performance in future time. A sys-
tem identification method is desired to provide quick and accurate
diagnosis and prognosis for system performance.

There is an increasing interest in the research of improving
energy efficiency in manufacturing plant floor operations [23e30].
Previous efforts in this area mainly focus on isolated or mutually
independent machines or processes [23e26]. Schudeleit et al.

compare the general energy efficiency test methods (i.e., reference
part method, reference process method, specific energy con-
sumption method, and component Benchmark method) for testing
machine tools' energy efficiency using a multiple criteria decision-
making technique and find the most promising candidate for
ISO14955 series [25]. However, the following property is shared in
modern manufacturing systems: the system exhibits highly com-
plex dynamics since the operation status of each machine is
determined not only by itself, but also by other machines and
buffers. Therefore, it is indispensable to consider the interactions
within production systems for effective energy management.

Energy optimization and control methods have also been
developed and applied to improve energy efficiency at the system
level [27e31]. Deif et al. focus on a systemmodel for the new green
manufacturing paradigm, which captures various planning activ-
ities to migrate from a less green into a greener and more eco-
efficient manufacturing [27]. Reference [31] proposes a system
approach for time-of-use based electricity demand response for
sustainable manufacturing systems under the production target
constraint. It is noted that these efforts are more focused on heu-
ristic rules or expert knowledge due to the lack of mathematical
theory and computational implementations that are sufficiently
flexible and robust to deal with the complex nature of production
systems.

Conventionally, researchers try to treat the production system
as one process or system to be controlled. Due to the difficulty of a
single central controller to deal with production system
complexity, one widely used solution has been to distribute deci-
sional capabilities to decisional entities, leading to non-centralized
control system [32]. The control architecture is semi-heterarchical
or fully heterarchical, and the control decision has been distrib-
uted to local entities. Chung et al. develop a modified genetic al-
gorithm approach to deal with the distributed scheduling models
with maintenance consideration, aiming to minimize the make-
span of the jobs [33]. Reference [34] proposes a domain-based
factory loading allocation problem for the conceptualization of a
multi-site manufacturing supply chain, and a decision propagation
structure incorporating with a connectionist approach is developed
based on the concept of constraint heuristic search to facilitate the
exploration of solution spaces. A systematic control scheme based
on mathematical model is much desired.

3. System description

Continuous flow models are used in this paper because the
production dynamics can be conveniently described by integral or
differential equations [10,16]. Continuous flow models assume the
quantity of jobs in the buffer varies continuously from zero to its
capacity. Consider a serial production line consisting ofMmachines
(represented by the rectangles) and M � 1 buffers (represented by
the circles) as shown in Fig. 1. The following notations are used in
this paper:

� Si denotes the ith machine, where 1 � i � M;
� Bi denotes the ith buffer, where 2 � i � M;
� siðtÞ denotes the actual processing speed of machine Si at time t;
� biðtÞ denotes the buffer level of buffer Bi at time t;
� Ki denotes the power rating of machine Si;

Fig. 1. General serial production line.
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