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h i g h l i g h t s

• Parametric method with higher moments to compute hedge ratios based on LPM.
• We compare the hedging performance of different methods.
• We study impacting factors for hedge ratios and hedging efficiency, respectively.
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a b s t r a c t

This paper considers a multi-scale future hedge strategy that minimizes lower partial
moments (LPM). To do this, wavelet analysis is adopted to decompose time series data
into different components. Next, different parametric estimation methods with known
distributions are applied to calculate the LPM of hedged portfolios, which is the key to
determining multi-scale hedge ratios over different time scales. Then these parametric
methods are comparedwith the prevailing nonparametric kernelmetricmethod. Empirical
results indicate that in the China Securities Index 300 (CSI 300) index futures and spot
markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric
method are inferior to those estimated by parametric hedgingmodel based on the features
of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the
hedging periods, degree of risk aversion, and target returns can affect themulti-scale hedge
ratios and hedge efficiency, respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rational investors like portfolio managers and some individuals often enter the futures markets with predetermined
hedging horizons that vary from seconds to months and beyond. Understanding the relationship between optimal hedge
ratios and time horizons is the key to fully exerting the functions of stock index futures. However, previous literature seldom
focuses on the effects of different time horizons on optimal hedge ratios. For example, the traditional Ordinary Least Squares
(OLS) and recently widely used Bivariate Generalized Autoregressive Conditional Heteroskedasticity (BV-GARCH) models
apply both the volatility and the correlation of spot and futures prices in a single period to calculate optimal hedge ratios
over different time horizons. Any ignorance of the impact over the hedging horizon on the optimal hedge ratio could be
detrimental to decision making and undermine hedging effectiveness.
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In and Kim [1] were the first to employ the wavelet analysis model to study the relationship between stock and futures
markets and to compute hedge ratios over different hedging horizons. Lien and Shrestha [2] decomposed a time series into
different scales using the maximal overlap discrete wavelet transform (MOWDT). Multi-scale optimal hedge ratios were
then calculated by OLS regressions of the spot wavelet coefficients on the futures wavelet coefficients at different scales.
Following the model introduced by Lien and Shrestha [2], Chen et al. [3] examined the performance of multi-scale hedge
ratios on the future markets of the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The empirical
results indicated that both hedge ratios and hedge effectiveness went up when hedging horizons increased, and hedge
ratios continued to climb until they approached the numerical value of one. This conclusion is consistent with findings in
Lien and Shrestha [2]. Conlon and Cotter [4] argued that a utility maximization framework, which incorporates the impacts
of degree of risk aversion and hedging horizons on optimal hedge ratios, should be used to determine multi-scale hedge
ratios.

In addition,with the growth of investors’ risk awareness, drawbacks of variance as a riskmeasure standard have gradually
been perceived because variance, as a traditional risk measure instrument, implies that agents view positive and negative
deviation from the expected return as equally undesirable. However, agents frequently perceive risk as a failure to achieve a
certain level of return. In this context, downside riskmeasures, assuming that returns below a certain reference level involve
risk and returns above a certain reference level represent better investment opportunities, can be highly relevant. To the
best of our knowledge, Sun and He [5] were the first scholars to combine multi-scale hedge ratios with the target of the
minimum-LPM hedge. However, their preference to estimate the joint density distribution is a nonparametric method that
boasts wide suitability but less efficiency.

In this study, we fill the gap in literature by introducing the parametric estimation method with higher moments
including coskewness and cokurtosis to computemulti-scale hedge ratios based on LPM. Thenewmodelmakes full use of the
information from the population like the parametric approach does, reflects the characteristics of non-normal distribution
of time series, and allows the estimation of hedge ratios for different horizons.

Our primary empirical results show that, in the CSI 300 index futures and spot markets, the nonparametric universal
kernel density method is inferior to parametric methods on the distribution features of time series. If LPM is selected as
hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and
hedge efficiency, respectively.

In the following text, Section 2 constructs the hedgingmodel; Section 3 processes the data from the CSI300 index futures
and spot markets; Section 4 expounds upon the empirical analysis and Section 5 draws conclusive findings.

2. Methodology

2.1. A short synopsis of wavelet multi-scale analysis

This section starts from a brief synopsis of the wavelet multi-scale analysis adopted from Percival and Walden [6].
Wavelet analysis, a recently developed signal processing technique in time and frequency domains, has been widely used
in the financial engineering fields.

To analyze local features, the given time series should be completely decomposed into different time horizons or
frequency components by automatically expanding and contracting the movement of two basic wavelet functions: the
father wavelet (or scaling function) ψj,k (t) and the mother wavelet (or wavelet function) φJ,k (t), which can be scaled and
translated to form a basis for the Hilbert space L2 (ℜ) of square integrable functions. The father and mother wavelets are
formally defined by the following functions:
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where j = 1, 2, . . . , J is the scaling parameter in a J-level decomposition, k is a translation parameter that determines the
location of analysis, 2j is the scale used to evaluate Φ (t), and t represents time. Given a continuous time series x (t), the
wavelet coefficients dj,k and scales coefficients BJ,k can be specified by:

dj,k =


x (t) ψj,kdt, j = 1, 2, . . . , J (2a)

BJ,k =


x (t) fJ,kdt (2b)

where dj,k is the series of detail coefficients obtained from the mother wavelet at all scales from 1 to J , the maximal scale,
and BJ,k is the series of coefficients from the father wavelet at maximal scale J . For mathematical convenience, the discrete
points have the sample size of N , which is assumed to be divisible by 2J and may be represented by w = WX , where W is
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