Essay

Bestial boredom: a biological perspective on animal boredom and suggestions for its scientific investigation

Charlotte C. Burn*
The Royal Veterinary College, North Mymms, Hertfordshire, UK.

A R T I C L E I N F O

Article history:
Received 26 January 2017
Initial acceptance 17 March 2017
Final acceptance 16 May 2017
MS. number: 17-00094R

Keywords:
animal behaviour
animal cognition
animal welfare
boredom
environmental enrichment
motivation
novelty
psychobiology
time perception

Chronic inescapable boredom is neither trivial nor benign. In Charles Dickens’s (1853) novel Bleak House, where the relatively modern word ‘boredom’ was coined, he described chronic boredom as ‘desolation’, a ‘malady’ and a ‘monster’. Boredom is an unpleasant emotion including suboptimal arousal levels and a thwarted motivation to experience almost anything different or more arousing than the behaviours and sensations currently possible (adapted from Mason & Burn, 2011, in press). It arises when we perceive that there is ‘nothing to do’ or are ‘tired of doing the same thing’ (Larson & Richards, 1991), and is accompanied by a sense of time dragging (Didier-Weil, 1990; Droit-Volet & Meck, 2007; Wahidin, 2006). Fahlman, Mercer-Lynn, Flora, and Eastwood (2013) suggested boredom includes five components they labelled as Disengagement, High Arousal, Low Arousal, Inattention and Time Perception. Boredom differs from other related states including frustration (Mason & Burn, 2011, in press), depression, stress and apathy (Goldberg, Eastwood, Laguardia, & Danckert, 2011). Inescapable boredom is highly distressing (Martin, Sadlo, & Stew, 2006), and a major torment for human prisoners (in both the U.S. and U.K.: Hunt, 2006, pp. 37–61; Wahidin, 2006). Human boredom can be triggered externally by monotonous, meaningless situations. This can cause work absenteeism, cognitive impairment, apathy (Harris, 2000), risk taking, alcoholism (Wegner & Flisher, 2009) and abnormal behaviours (such as head banging or rocking; Mendez & Mirea, 1998). Similarly, boredom proneness exists as a personality trait, predictive of addiction, aggression, depression, impulsivity, sensation seeking, dangerous driving and juvenile delinquency (Dahlen, Martin, Ragan, & Kuhlman, 2005; Harris, 2000; Mercer-Lynn, Flora, Fahmal, & Eastwood, 2013; Newberry & Duncan, 2001). Toohey (2011, page 1) suggested ‘Predictability, monotony and confinement are all key’ to triggering boredom. Although he was mostly writing about human boredom, these three factors typify captive life for nonhuman animals, so boredom could be a prevalent and chronic animal welfare problem (Mason & Burn, 2011; Wemelsfelder, 2005). Boredom is socially and
economically important, and it has been studied in human socio-
logical and psychological fields. However, investigation of its bio-
logical basis is just beginning.

Here I aim to help stimulate biological research into boredom in
wild and captive animals. This paper consists of two main sections.
First, I summarize the still rather scant empirical evidence and,
using Tinbergen’s (1963) framework, explore theoretical argu-
ments for boredom-like states in animals. Second, to enable iden-
tification of potential behavioural and physiological indicators of
boredom, I characterize boredom in terms of its likely behavioural
and physiological manifestations, suggesting how it might be
measured in future research. I cover the valence (pleasantness) and
arousal (wakefulness) qualities of boredom, using them to predict
many likely indicators of boredom. However, not every indicator
fits the valence-arousal framework so I also include other likely
hallmarks of boredom, such as manifestations of perceived slow
passage of time, abnormal behaviour and sleep disruption. Being
able to scientifically study objective indicators of boredom has wide
relevance, enabling use of animal models of human boredom,
research into the ethology and evolution of boredom, and scientific
evaluation of the efficacy of interventions to combat human and
animal boredom.

WHY MIGHT NONHUMAN ANIMALS EXPERIENCE BOREDOM?

A dog left home alone for several hours each day energetically
extracts the foam from a well-chewed corner of the sofa, then
whines, yawns and lies awake awhile before getting up again (Lund
& Jørgensen, 1999); Alex, the African grey parrot, having shown
great prowess in naming colours and quantities of numerous ob-
jects, starts to stare at the ceiling, to offer nonsensical answers to
questions, repeatedly preens himself, and requests to go to his cage
or be given water, food or novel treats (Pepperberg, 2013); a labo-
atory rat sniffs through the bars of its unenriched cage, digs briefly
at the sawdust, sniffs the cage walls and nips at a passing cagemate
(Abou-Ismail, Burman, Nicol, & Mendll, 2010); and a farmed pig
with no substrate to chew sits and stares, then stands inactive
awhile, before suddenly chewing a penmate’s tail (Studnitz, Jensen,
& Pedersen, 2007). To the naïve observer, the behaviour of each of
these animals may be reminiscent of that of a bored human. Indeed,
the little evidence to date suggests the homology may go deeper
than mere superficial resemblance.

As with any emotion, boredom is private to the individual
experiencing it. Therefore, we cannot be certain that other indi-
viduals, human or otherwise, experience it exactly as we our-
selves do. The term ‘Boredom’ has historically been rather taboo in
serious animal behaviour science, being labelled as ‘anthropo-
morphic’, or dismissed as trivial compared with some other welfare
issues (Wemelsfelder, 2005). Moreover, boredom is sometimes
assumed to be unique to humans (e.g. Anderson, 2004). Thus, it has
largely been neglected despite its potential prevalence and malm-
nance. However, there are both empirical and theoretical reasons,
as well as ethical ones, to encourage biological exploration of ani-
mal boredom.

Existing Empirical Studies of Animal Boredom

The few studies explicitly aiming to investigate animal boredom include observations that propensity for behavioural diversity is significantly reduced in pigs, Sus scrofa, kept in impoverished en-
vvironments for 5 months compared with pigs that received
manipulable substrate (Wemelsfelder, Hunter, Mendll, & Lawrence,
2000). This is consistent with boredom, but also with other ex-
planations, including apathy, depression or cognitive impairment.
Taking a different approach, monotony causes many species to seek
novelty, even novel stimuli they would normally avoid (reviewed in
Berlyne, 1960; Kirkden, 2000; Mason et al., 2013; Stevenson, 1983).
For example, despite normally shunning bright light, rats, Rattus
norvegicus, increasingly pressed levers for flashes of light the longer
they were kept in darkness (in Berlyne, 1960). Similarly, rats given
only their preferred food for 3 days and then offered a choice
selected a nonpreferred food, even one previously associated with
sickness (Galef & Whiskin, 2003). Thus, even initially positive
monotony becomes aversive with time.

More recently, clear hypotheses regarding a key hallmark of
boredom, motivation for general stimulation (Meagher, Campbell,
& Mason, in press; Meagher & Mason, 2012), have been tested in
fur-farmed mink, Mustella vison. Compared with mink in environ-
mentally enriched cages, those in standard cages were significantly
more likely to approach diverse stimuli, ranging from rewarding
cues to (normally) aversive ones. Standard-housed mink also
consumed more snacks and spent more time lying awake inactive,
as is reported in bored humans (Moynihan et al., 2015). Together,
this profile of behaviours enabled Meagher and Mason (2012) to
differentiate boredom from depression or apathy as explanations
for the awake inactivity so prevalent in standard-housed mink.

Hypothetical Ethological Explanations for Animal Boredom

The above examples all originate from studies of captive ani-
mals, understandably as captive animals are subject to inescapable
monotonous situations more than wild ones are. Yet, as captivity is
a relatively recent challenge in evolutionary terms, one might ask
why the ability to experience boredom would have evolved. As so
few studies have explicitly investigated animal boredom, the hy-
pothetical explanations I offer draw on indirect evidence regarding
human boredom or from indirectly relevant phenomena in
nonhuman animals (e.g. impulsivity, neophilia [attraction to nov-
elty] or sensation seeking). I offer suggestions rather than answers.
With this limitation acknowledged, I briefly explore how and why
animals might experience boredom, using Tinbergen’s (1963) four
levels of explanation as a framework.

Causation of boredom

Causation refers to the immediate internal and external mech-
nisms that trigger individual behaviour, or in this case a behav-
ioually relevant emotion. Causal explanations comprise myriad
mechanisms, ranging from environmental cues to endocrine,
neurological and other physiological signals. As indicated earlier,
a key external trigger for boredom in captive animals will be barren
environments, which may be spatially and/or temporally monoton-
ous. Boredom thus occurs when both external and internal
stimulation are insufficient to maintain optimal arousal (Berlyne,
1960).

The neural mechanisms producing boredom have seemingly not
been investigated even in humans, but the brain’s arousal systems
will be relevant. Arousal is nonunitary, instead being distributed
across several different, interconnected brain structures (Calderon,
Kilinc, Maritan, Banavar, & Pfaff, 2016; Jones, 2003). Within the
brainstem, arousal is supported by six systems: (1) long glutama-
nergic nucleus gigantocellularis neurones in the reticular for-
mation, which receive cortical and multisensory peripheral
stimulation and have both ascending (cortical) and descending
(autoomic, neuroendocrine and motor) projections; (2) cholin-
ergic pontomesencephalic neurones, which facilitate awakening
and REM sleep; (3) the mesolimbic dopamine pathway, which
helps elicit all motivations and reward-directed behaviour; (4) the
adjacent nigrostriatal dopamine system, which increases arousal
and reward-directed behaviour, and is involved in time perception
(Jahanshahi, Jones, Dinrberger, & Frith, 2006; Simen & Matell,
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات