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a b s t r a c t 

A feedback solution for approximate optimal scheduling of switched systems with autonomous subsys- 

tems and continuous-time dynamics is presented. The proposed solution is based on policy iteration al- 

gorithm which provides the optimal switching schedule. Algorithms for offline, online, and concurrent 

implementation of the proposed solution are presented. For online and concurrent training, gradient de- 

scent training laws are used and the performance of the training laws is analyzed. The effectiveness of 

the presented algorithms is verified through numerical simulations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In this study, a class of hybrid systems [1] comprised of a 

finite number of subsystems/modes with continuous-time (CT) 

dynamics, and a switching rule is considered. In such switched 

systems, the switching rule assigns the switching instants and ac- 

tive modes [2–4] . Moreover, the modes are considered to be au- 

tonomous which means no continuously varying control exists in 

the modes [4] . Hence, the only control input is switching among 

modes. This definition of switched systems embraces many inter- 

esting engineering problems [5–9] . 

Due to discontinuous nature of the problem, deriving opti- 

mal solutions for control of the switched systems is a challeng- 

ing task [4,10,11] . From mathematical point of view, the necessary 

and sufficient condition for optimality is provided by the under- 

lying Hamilton–Jacobi–Bellman (HJB) equation [12] . However, solv- 

ing the HJB equation analytically is difficult and generally impos- 

sible [13] . The existing solutions for the optimal control problems 

such as calculus of variations or Dynamic Programming (DP) are 

intractable in highly nonlinear systems [12,14] due to curse of di- 

mensionality [12,15,16] . To remedy the mentioned problem in opti- 

mal control, Approximate Dynamic Programming (ADP) was intro- 

duced which approximates the optimal solution [17,18] . In general, 

ADP uses function approximators, such as neural networks, to ap- 
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proximate optimal cost-to-go (value function), namely critic , and 

sometimes optimal policy, namely actor . The backbone of ADP is 

application of iterative methods to tune the unknown parameters 

of the mentioned function approximators in order to approximate 

the optimal value function which solves the HJB equation [19–23] . 

Policy iteration (PI) is an iterative algorithm which is fre- 

quently used in the ADP methods to find the optimal solutions 

[14,24–29] . In general, the evolving policies generated by PI algo- 

rithm are known to be stabilizing [30] . Mathematically, the proof 

of convergence in online application of PI algorithm in systems 

with CT dynamics is either based on satisfaction of Persistency of 

Excitation (PE) condition [14,27,31,32] or application of carefully 

selected data along with on-trajectory data [28,29] . The latter is 

called concurrent training and was developed to relax the PE con- 

dition since this condition is restrictive and generally cannot be 

verified online [33] . 

The ADP-based solutions for optimal control of the switched 

systems were studied in [10,11,34–37] for discrete-time (DT) dy- 

namics and in [35,38–40] for CT dynamics. In [35] , the problem 

of optimal scheduling in the switched systems with CT dynam- 

ics and homogenous subsystems was solved with a Value Itera- 

tion (VI) algorithm. In [39] , an optimal scheduler was developed 

based on a PI algorithm for switched systems with controlled sub- 

systems where the dynamics of the subsystems include both con- 

tinuous state and control signals. The presented algorithm trained 

two different neural networks as actor and critic. In another work, 

an optimal tracking scheduler was developed in [38] . The pro- 

posed scheduler formulated a PI algorithm which also trained two 
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neural networks as actor and critic. The output of the actor was a 

continuous signal which needed to be discretized for scheduling. 

Hence, the controller used a hard limiter function which receives 

the continuous output of the actor and discretizes it, to select the 

proper mode. In [40] , a PI algorithm was developed for optimal 

scheduling in the switched systems where online training law was 

derived based on recursive least squares. The comparison between 

the above-mentioned studies and the current one is given in the 

sequel. 

The challenging nature of the switched system control, lack 

of sufficient theoretical investigations with ADP methods for this 

problem in CT dynamics, and the large engineering application of 

this control problem are the main motivations of this paper. The 

main contributions of the present study are as follows 1 . 

• Convergence, stability of evolving control policies, and formula- 

tion of a PI algorithm for the switched systems are presented. 

• A new approach for proof of convergence of PI algorithm in sys- 

tems with CT dynamics is presented. 

• Derivations for extending the results to optimal tracking con- 

trollers in the switched systems are given. 

• A concurrent training algorithm is presented to implement the 

PI algorithm for the switched systems. 

Before presenting the main results, some comparisons between 

this paper and recent relevant studies are given. Compared to [35] , 

the present work deals with general class of switched systems with 

autonomous subsystems rather than special class of switched sys- 

tems with homogenous subsystems. Meanwhile, the derivations of 

the approximate optimal solution in the present study is based 

on PI algorithm. This is one of the differences between this work 

and [35] which uses VI as another capable learning algorithm. 

Compared to [39] , the present study deals with switched sys- 

tem with autonomous subsystems where in [39] switched systems 

with controlled subsystems were studied. Compared to [38] , the 

present study explicitly provides the optimal switching schedule. 

This scheduling is completely different from the procedure used in 

[38] for assigning active modes through using a hard limiter func- 

tion to discretize the output of the actor. At last, the present study 

uses gradient descent for online training with exponential con- 

vergence rate. However, in [40] recursive least squares was used 

for which the convergence rate is not exponential. Meanwhile, the 

convergence and stability of the PI algorithm for the switched sys- 

tems are investigated in this paper which were missing in [40] . 

The rest of the paper is organized as follows. In Section 2 , nota- 

tions are introduced. In Section 3 , the optimal switching problem is 

formulated and the proposed solution is discussed in Section 4 . In 

Section 5 , the proposed PI algorithm is introduced and its conver- 

gence to the optimal solution is analyzed. The implementation of 

the proposed algorithm with offline, online, and concurrent train- 

ing methods are discussed in Section 6 and simulation results are 

presented in Section 7 . At last, Section 8 , concludes the paper. 

2. Notations 

Throughout the paper, R denotes the real numbers. The set of 

real n -vectors is denoted with R 

n and set of real n × m matrices are 

denoted with R 

n ×m . The absolute value of a scalar s ∈ R is denoted 

by | s |. The Euclidean norm of a vector v ∈ R 

n is denoted by ‖ v ‖ and 

the 2-norm of a matrix M ∈ R 

n ×m is denoted by ‖ M ‖ . The trans- 

pose operator is denoted by (.) T and λmin (.) represents the mini- 

mum eigenvalue of its argument. At last, the gradient of a vector 

is defined as a column vector and denoted by ∇ ≡ ∂ 
∂x 

. 

1 The preliminary results of this research were presented in 2016 International 

Joint Conference on Neural Networks (IJCNN 2016) [41] . 

3. Problem formulation 

Nonlinear dynamics of a switched system with autonomous 

subsystems can be presented as 

˙ x (t) = f ω 
(
x (t) 

)
, ω ∈ V = { 1 , 2 , ..., M} , x (0) = x 0 , (1) 

where x ∈ R 

n is the state vector and t denotes the time. The active 

mode in the system is denoted by subscript ω and f ω : R 

n → R 

n 

denotes the dynamics of the active mode. Meanwhile, the set of 

all subsystems/modes that can be selected for the operation of the 

system is denoted by V and parameter M is the number of subsys- 

tems in the system. Considering � ⊂ R 

n as the region of interest 

that includes the origin, it is assumed that each mode f ω (.) is Lips- 

chitz continuous in � and there exists at least one mode for which 

f ω (0) = 0 . For the operation of the system, the active mode ω may 

be selected by a feedback control law (scheduler) denoted by v (.), 

such that at each time t only one mode ω is active. 

The selected infinite horizon cost function for the switching 

problem is given by 

J(x 0 ) = 

∫ ∞ 

0 

Q(x (τ )) dτ, (2) 

where x 0 = x (0) and Q(. ) : R 

n → R is a positive definite function. 

The objective is finding a stabilizing switching schedule in a feed- 

back form, i.e., v ( x ), such that the cost function in (2) is minimized 

subject to dynamics presented in (1) . 

4. Proposed solution 

Considering (2) , and a given policy, the cost-to-go, denoted with 

V : R 

n → R , can be defined as 

V 

(
x (t) 

)
= 

∫ ∞ 

t 

Q(x (τ )) dτ. (3) 

Considering a time interval [ t , t + δt ] , one has 

V 

(
x (t) 

)
= 

∫ t+ δt 

t 

Q 

(
x (τ ) 

)
dτ + V 

(
x (t + δt) 

)
. (4) 

For notational brevity, hereafter x = x (t) unless otherwise stated. 

Using the Bellman principle of optimality [12] , the optimal cost- 

to-go, V ∗ : R 

n → R , can be defined as 

V 

∗(x ) = min 

v (. ) 

(∫ t+ δt 

t 

Q 

(
x (τ ) 

)
dτ + V 

∗(x (t + δt) 
))

, (5) 

where the policy given by v (.) is exploited to propagate the states 

from t to t + δt . As δt → 0, the optimal switching policy can be 

given by 

v ∗(x ) = arg min 

v ∈V 

(∫ t+ δt 

t 

Q 

(
x (τ ) 

)
dτ + V 

∗(x (t + δt) 
))

. (6) 

In order to derive the infinitesimal form of the Bellman equation, 

the following assumption is required. 

Assumption 1. The value function is continuously differentiable, 

i.e., V (.) ∈ C 1 , [4,39,42] . 

Remark 1. Besides serving the purpose in derivation of the de- 

sired equations, Assumption 1 makes application of function ap- 

proximators, such as neural networks, possible in order to uni- 

formly approximate the value function [43] . In general, differen- 

tiability or even continuity of value functions in optimal control 

problems is not clear [25] . Differentiability and twice differentia- 

bility of the value functions are studied in [44–48] for some classes 

of optimal control systems. For Hybrid and switched systems, con- 

tinuity of the value functions was investigated in [10,35,49–51] for 
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