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a b s t r a c t

A computationally efficient and effective multi-level coarse mesh finite difference (CMFD) acceleration is
proposed using the local two-node nodal expansion method for solving the three-dimensional multi-
group neutron diffusion equation. The multi-level CMFD acceleration method consists of two essential
features: (1) a new one-group (1G) CMFD linear system is established by using cross sections, flux and
current information from the multi-group (MG) CMFD to accelerate the MG CMFD calculation, (2) an
adaptive Wielandt shift method is proposed to accelerate the inverse power iteration of 1G CMFD in order
to provide an accurate estimate of the eigenvalue at the beginning of the iteration for both 1G and MG
CMFD linear system. Additionally, a nodal discontinuity factor and a diffusion coefficient correction factor
are defined to achieve equivalence of the 1G and MG CMFD system. The accuracy and acceleration per-
formance of multi-level CMFD are examined for a variety of well-known multi-group benchmarks prob-
lems. The numerical results demonstrate that superior accuracy is achievable and the multi-level CMFD
acceleration method is efficient, particularly for the larger, multi-group systems.

Published by Elsevier Ltd.

1. Introduction

The computational feasibility of the three-dimensional (3D)
whole-core, pin-resolved transport calculation depends on the
use of efficient multi-group coarse mesh finite difference (CMFD)
method to accelerate convergence of the calculation. This was
demonstrated very clearly in the development of the Michigan Par-
allel Characteristics Transport (MPACT) code (MPACT, 2015) and its
application to practical full core Pressurized Water Reactor (PWR)
applications. The CMFD solution provided a framework to acceler-
ate the convergence of the eigenvalue problem. In the case of the
2D-1D method used in MPACT, CMFD also provided a natural
mechanism to synthesize the 2-D radial MOC transport and the
1-D axial diffusion solution. However, the computational cost of
solving the CMFD is still not trivial. In many transport codes that
use CMFD procedures (e.g., the MPACT code), obtaining solutions
to the CMFD diffusion eigenvalue problem can constitute a signif-
icant portion of the computational effort for practical applications
(Yee et al., 2017).

The technique of multi-level CMFD acceleration has been
implemented in several established core simulators (Downar
et al., 2009; Yoon and Joo, 2008; Zhong et al., 2008) and most often
a two-group (2G) CMFD has been used to accelerate the multi-
group (MG) CMFD calculation. Some research has been performed
on the use of a multilevel method with an additional energy grid
between the one group and multi groups was investigated in
recent research (Cornejo and Anistratov, 2016). However, the work
reported here extends previous work by not only implementing a
multi-level CMFD method but by also developing an adaptive Wie-
landt shift (WS) technique in which a 1G CMFD is used to provide
an effective estimate of the eigenvalue at the beginning of power
iterations for both 1G and MG CMFD linear systems which signifi-
cantly reduces the number of outer iterations required for conver-
gence. Additionally, the work here introduces two separate factors
to achieve equivalence between the 1G and the MG solutions. A
nodal discontinuity factor (NDF) and a diffusion coefficient correc-
tion factor (DCF), are calculated using the collapsed cross sections,
flux and current information from the MG CMFD to achieve consis-
tency of the 1G and MG CMFD solutions. For the MG CMFD linear
system, the correction factors NDF and DCF are updated using the
local two-node nodal expansion method (NEM). Both the MG and
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1G CMFD linear systems are solved by utilizing an innovative pre-
conditioned GMRES solver.

In the following section, the multi-level CMFD acceleration for-
mulation is derived and then in Section 3, a range of well-known
multi-group benchmark problems are solved to demonstrate the
accuracy and the acceleration performance of themethod is assessed.

2. Multi-level CMFD method

2.1. Multi-level CMFD formulation

The 3D multi-group discrete diffusion equation is based on the
finite difference method which in the Cartesian coordinate system
is given by:
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where /; J;R;v; S;V and A are the neutron flux, current, cross sec-
tion, fission spectrum, source, volume and surface area with stan-
dard definitions in nuclear reactor physics. In general, the source
is equal to zero for steady state equation. The subscript g, g0 are
the neutron energy group index and the total number of energy
group is G. The superscript k is the number of iteration, and eigen-
value is given as k ¼ 1=keff . The subscripts c and n are the index for
the center node and neighbor node, and ‘‘c; n” is the index for the
interface between node c and node n. The interface current from
node c and node n is given by:

Ac;nJg;c;n ¼ ~Dg;c;n
�/g;c � ~Dg;n;c

�/g;n ð2Þ

where the ~Dg;c;n is used to force the interface current obtained by Eq.
(1) to be same as that obtained by a higher order nodal expansion
method in the two-node problem. This expression for ~Dg;c;n can be
written as:
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An albedo boundary condition is used for the boundary node
treatment and ~Dg;c;n is given as the following:
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Here hc;n is the thickness of node c in the direction from node c to n.
Dg is the diffusion coefficient. The albedo a has different values for
each different boundary condition, e.g. 0.5 for vacuum boundary
condition and 0 for reflective boundary condition.

The factors f disg;c;n and f difg;c;n are the multi-group nodal disconti-
nuity factor and the diffusion coefficient correction factors,
respectively (Xu and Downar, 2012), which can be quantified by
using the same expressions as Eqs. (8)–(10) only need to use sur-
face current updated by using local two-node nodal expansion
method as described in Section 2.2. The multi-group CMFD linear
system can then be written as:
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where W, E, N, S, T and B represent the west, east, north, south, top
and bottom surface of the node. The superscript k is the iteration
number. Because of its larger condition number, the MG CMFD lin-
ear system converges much more slowly than the 1G CMFD linear
system, and therefore it is beneficial to utilize the fission source
from the 1G CMFD to accelerate the MG calculation. This will be
demonstrated with numerical examples in the following section.

The 1G CMFD linear system can then be derived by collapsing
Eq. (5) over all every groups g. At the same time, WS method is
used to accelerate outer iteration of 1G CMFD, which then can be
written as follows:
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where kk�1
s is the shift of k� 1 inverse power iteration for 1G prob-

lem, and except for the special treatment of ~Dc;n, all other terms are
defined as follows:
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The formula for ~Dc;n is the same as Eqs. (3) and (4). But different
from the MG CMFD, the discontinuity factor and diffusion coeffi-
cient correction factor for 1G CMFD linear system is determined
using interface current from MG CMFD. Once the multi-group cur-
rent at an interface is known, it is possible to calculate the 1G dis-
continuity factor and diffusion coefficient correction factor as
follows:

D�/c;n ¼ �Jc;nhc;n=2Dc ð8aÞ

D�/n;c ¼ �Jc;nhn;c=2Dn ð8bÞ
where �Jc;n is one group interface current determined by Eq. (7b) and
D is one group diffusion coefficient calculated by using Eq. (7e).

If �Jc;n P 0 and �/c � D�/c;n P �/n þ D�/n;c , then the one group dis-

continuity factor f disc;n and diffusion coefficient correction factor

f difc;n can be calculated as:
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