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a b s t r a c t

Accurately forecastingwind speed is a criticalmission for the exploitation andutilization ofwind power. To
improve the prediction accuracy, the nonlinearity and nonstationarity embedded inwind speed time series
should be reduced. Because the subseries has less nonlinearity andnonstationarity after decomposition, the
decomposition-based forecasting methods are widely adopted to provide the higher predictive accuracy.
However, latest studies showed the real time decomposition-based forecasting methods could be worse
than the single forecasting models. The aim of this study is to improve the performance of the real time
decomposition-based forecasting method after the factors attributed to its unsatisfactory performance
are uncovered. In this paper, the feature selection and error correction are adopted in the real time
decomposition-based forecasting method to enhance the prediction accuracy. In the proposed method,
the rawwind speed time series is decomposed into a number of different subseries by ensemble empirical
mode decomposition; then two feature selection methods including kernel density estimation-based
Kullback-Leibler divergence and energy measure are used to reduce the disturbance of illusive compo-
nents; further the least squares support vectormachine is adopted to establish the one-step ahead forecast-
ing models for the remaining subseries; finally, the hybrid of least squares support vector machine and
generalized auto-regressive conditionally heteroscedastic model is introduced to correct resulting error
component if its inherent correlation andheteroscedasticity cannot beneglected. Based on two sets ofmea-
sured data, the results of this study show that: (1) the real time decomposition-basedmethodmay be inef-
fective in practice; (2) both the feature selection and error correction can improve forecasting performance
in comparison with the real time decomposition-based method; (3) compared with other involved
methods, the proposed hybrid method has the satisfactory performance in both accuracy and stability.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As a renewable and environmentally friendly energy resource,
wind energy is of vital importance among the low-carbon energy
technologies and has attracted the global attention. According to
the World Wind Energy Report [1], the total installed wind power
capacity has reached to 160,000 MW in 2009, and it is expected to
double every 3 years. Along with the rapid development and uti-
lization of wind energy, the green gas emission and the traditional
fossil fuels utilization are drastically reduced. However, due to the
stochastic and intermittent characteristics of the wind source [2],
the integration efficiency of wind power into a multisource energy
network poses many challenges on a series of tasks, such as the
energy generation planning and turbine maintenance scheduling
[3]. These challenges have severely hindered the exploitation of
wind energy. One of the methods to mitigate these challenges is
the improvement of short-term wind speed forecasting accuracy
and the reduction of its uncertainty [4].
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Abbreviations: ARMA, Auto-Regressive Moving Average; ARIMA, Auto-
Regressive Integrated Moving Average; FARIMA, Fractional Auto-Regressive Inte-
grated Moving Average; MTK, Modified Taylor Kriging; ANN, Artificial Neural
Networks; SVM, Support Vector Machine; MLP, Multi Layer Perceptron; LSSVM,
Least Squares Support Vector Machine; SSA, Singular Spectrum Analysis; RBFNN,
Radial Basis Function Neural Network; GSA, Gravitational Search Algorithm; ANFIS,
Adaptive Network-based Fuzzy Inference System; PSO, Particle Swarm Optimiza-
tion; GARCH, Generalized Autoregressive Conditionally Heteroscedastic; ELM,
Extreme Learning Machine; EMD, Empirical Mode Decomposition; EEMD, Ensemble
Empirical Mode Decomposition; FEEMD, Fast Ensemble Empirical Mode Decompo-
sition; WD, Wavelet Decomposition; WPD, Wavelet Packet Decomposition; GA-BP,
Genetic Algorithm-Back Propagation; IMF, Intrinsic Mode Function; KDE, Kernel
Density Estimation; KLD, Kullback-Leibler Divergence; MEMD, Multivariate Empir-
ical Mode Decomposition; PDF, Probability Density Function; ACF, Autocorrelation
Function; PACF, Partial Autocorrelation Function; MAE, Mean Absolute Error; MRPE,
Mean Relative Percentage Error; RMSE, Root Mean Square Error; RMSRE, Root Mean
Square Relative Error; KS, Kolmogorov-Smirnov; CDF, Cumulative Distribution
Function.
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In the past few decades, numerous methods have been pro-
posed to enhance the prediction accuracy including physical
approaches and statistical models. Every kind of methods has their
own advantages and disadvantages. The physical approaches take
into account the meteorological factors and are generally used
for long-term wind speed prediction [5]. On the other hand, the
statistical models are usually suitable for short-term wind speed
prediction based on the historical data. These statistical models
mainly include linear time series and nonlinear intelligent models,
which will be reviewed below.

Time series models, such as auto-regressive moving average
(ARMA) and auto-regressive integrated moving average (ARIMA),
have been widely applied in short-term wind speed prediction.
In Ref. [6], ARMA model was adopted to forecast the tuple of wind
speed and direction, and the forecasting results validated the effec-
tiveness of this method. Cadenas and Rivera [7] proposed an
ARIMA model to forecast the wind speed and the forecasting
results were better than the persistence model. In recent years, a
number of new time series models have been developed. In Ref.
[8], a fractional-ARIMA (FARIMA) was used to forecast wind speed
on the 24 h and 48 h horizons and showed significant improve-
ments compared to ARIMA model. Liu et al. [9] proposed a modi-
fied Taylor Kriging model for wind speed prediction and the
forecasting precision was found to be higher than ARIMA model.
These models can explicitly reveal the linear relationship in the
time series. However, they usually have unsatisfactory forecasting
performance for the wind speed data with strong nonlinear
features.

Different from the time series models, the nonlinear intelligent
models can explain the nonlinear relationship between the input
and output. Thus, they can provide better prediction results if the
nonlinear characteristics of wind speed time series are prominent.
For example, Cadenas and Rivera [10] proposed an artificial neural
networks (ANN) for wind speed prediction and the forecasting
results showed the proposed method could improve the prediction
accuracy effectively; Mohandes et al. [11] introduced a support
vector machine (SVM) to conduct the wind speed prediction and
the prediction results were better than the multilayer perceptron
(MLP); Zhou et al. [12] presented an optimal least squares SVM
(LSSVM) based on better tuning LSSVM model parameters for wind
speed forecasting and the prediction results were satisfactory.
Every coin has two sides. Compared with the linear time series
model, these nonlinear models may suffer from inefficient or
over-fitted training and need more manual intervention for model
parameters tuning [13].

Recently, the uncertainty of wind power prediction has been
incorporated. For example, Qadrdan et al. [14] proposed an effi-
cient method to generate probabilistic wind power forecast scenar-
ios using singular spectrum analysis (SSA), Monte Carlo simulation
and a scenario reduction algorithm. The final results validated the
effectiveness of the approach. Bramati et al. [15] developed a new
method for wind power prediction using the dynamic system of
equations, which considered the uncertainty from the climate
and the functioning of turbines. The prediction results showed
the proposed method outperformed the benchmark model.

To further enhance the accuracy of the wind speed or power
prediction, various hybrid approaches have been developed. For
example, Liu et al. [16] proposed four different hybrid methods
for high-precision multi-step wind speed predictions based on
the adaptive boosting algorithm and MLP neural networks and
the results showed these hybrid methods were effective. Meng
et al. [17] adopted a new hybrid model for wind speed prediction
based on wavelet packet decomposition (WPD), crisscross opti-
mization algorithm and ANN, and the results showed the proposed
method had significant advantage over the other reference models.

These hybrid models mainly include weighting-based approaches,
parameter optimization-based approaches, error correction-based
approaches and decomposition-based approaches and could gen-
erally utilize the strengths of individual methods [5]. For instance,
Han and Liu [18] proposed a weighting-based forecasting method
where the maximum entropy principle was utilized to obtain the
weight coefficient of persistence, ARIMA and four ANN-based mod-
els. The forecasting results showed that this hybrid method outper-
formed those single models. Shi et al. [19] proposed another
weight-based hybrid model combining LSSVM and radial basis
function neural network (RBFNN) based on grey relational analysis
and wind speed distribution features. The results showed that the
proposed model had significantly improved the forecasting accu-
racy. Ref. [2] addressed a parameter optimization-based forecast-
ing method where the parameters of LSSVM model were
optimized by gravitational search algorithm (GSA) and the results
validated the effectiveness of the approach. Pousinho et al. [20]
presented another parameter optimization-based forecasting
method based on adaptive network-based fuzzy inference system
(ANFIS). The forecasting results showed that particle swarm opti-
mization (PSO)-based hybrid model could improve the prediction
accuracy by comprehensive parameter selection. Liu et al. [21] pre-
sented an error correction-based forecasting method which used
generalized auto-regressive conditionally heteroscedastic (GARCH)
model to modify the ARMA model forecasting results. The results
showed the performance of the ARMA-GARCH was satisfactory.
Liang et al. [4] proposed another error correction-based method
for multi-step ahead wind speed prediction where SVM or extreme
learning machine (ELM) was established to forecast the error com-
ponent and the simulation results demonstrated the effectiveness
of the proposed model. Liu et al. [22] applied decomposition-
based forecasting method which used the recursive ARIMA model
to forecast individual subseries of wind speed time series based on
empirical mode decomposition (EMD). The forecasting results
showed the hybrid model had superior performance over the sin-
gle ARIMA model. Hu et al. [23] investigated the possibility of
improving the quality of wind speed forecasting by combining
ensemble EMD (EEMD) and SVM. This model showed the better
prediction capacity compared with other models. Sun and Liu
[24] developed a hybrid model which combines fast EEMD
(FEEMD) with regularized ELM for wind speed forecasting and
the simulation results showed that the built model was effective
and practicable. Liu et al. [25] had developed another four different
hybrid models by combining four mainstream signal decomposing
algorithm [e.g., wavelet decomposition (WD), WPD, EMD and
FEEMD] and ELM for multi-step wind speed forecasting. This
hybrid method integrated the advantages of individual models
and improved the forecasting accuracy. Clearly, although the
hybrid methods may increase the prediction accuracy, they intro-
duce the complexity of the algorithm. Hence, it is necessary to bal-
ance the prediction accuracy and the complexity before the hybrid
methods are used.

Focusing on the decomposition-based forecasting methods,
Wang and Wu [13] pointed out that many of these methods based
on the pre-processing scheme that all data, including the known
data (the training data) and the unknown data (the forecasting
data), were decomposed only once before prediction. This pre-
processing scheme was unreasonable and violated the purpose of
the wind speed prediction. In order to address this problem, they
used another pre-processing scheme that the original data should
be divided into training and forecasting parts, and the decomposi-
tion for training part should be real time. With newly obtained
data, the training data should be updated and re-decomposed.
However, the results showed that this real time decomposition-
based forecasting methods may be ineffective in comparison with
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