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a b s t r a c t

Electrical power system (EPS) forecasting plays a significant role in economic and social development but
it remains an extremely challenging task. Because of its significance, relevant studies on EPS are espe-
cially needed. More specifically, only a few of the previous studies in this area conducted in-depth in-
vestigations of the entire EPS forecasting and merely focused on modeling individual signals centered on
wind speed or electrical load. Moreover, most of these past studies concentrated on accuracy im-
provements and usually ignore the significance of forecasting stability. Therefore, to simultaneously
achieve high accuracy and dependable stability, a hybrid forecasting framework based on the multi-
objective dragonfly algorithm (MODA) was successfully developed in this study. The framework con-
sists of four modulesddata preprocessing, optimization, forecasting, and evaluation modules. In this
framework, MODA is employed to optimize the Elman neural network (ENN) model as a part of the
optimization module to overcome the drawbacks of single-objective optimization algorithms. In addi-
tion, data preprocessing and evaluation modules are incorporated to improve forecasting performance
and conduct a comprehensive evaluation for this framework, respectively. Empirical results reveal that
the developed forecasting framework can be an effective tool for the planning and management of power
grids.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The power industry is an important basic industry needed for
national economic and social developments. Moreover, electrical
safety affects the overall state of economic development, sustained
harmony in society, lives of the common people, and security of
property. As most people are aware of, the electrical power system
(EPS) is a complex systemdwhich simultaneously accomplishes
generation, transmission, distribution, and sale of electric ener-
gydplaying an important role in social and economic de-
velopments. Furthermore, the control provided by EPS contributes
to the orderly management of electricity and reasonable opera-
tional plans, energy and cost saving, and substantial economic and
social benefits [1]. Hence, researches that focus on EPS have
immense political and economic importance for the whole society.

Many studies related to EPS have been conducted, namely dynamic
operation and control strategies for microgrid hybrid power sys-
tems [2], connection decisions of distribution transformers [3],
forecasting issues including electricity load forecasting [4], wind
power forecasting [5], wind speed forecasting [6], solar radiation
forecasting [7], output power of photovoltaic plants [8], and so on.
In general, many problems still exist in the hybrid generation sys-
tem, and researchers have made in-depth exploration and analysis
focusing on unsymmetrical faults [9], microgrid distribution
ground fault [10], and unbalanced distribution network fault [11],
etc. For instance, Qu et al. [12] proposed a novel intelligent damping
controller to reduce power fluctuations, voltage support and
damping in hybrid power multi-systems. The EPS forecasting is a
very promising area in hybrid power system, which also plays a
significant role in the operation of hybrid power systems. However,
it remains an extremely challenging task. Therefore, this study fo-
cuses on the forecasting issues with the goal of developing an
effective forecasting framework.

There are three main signals connected to generation,
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distribution, and consumption in the EPS, namely short-term wind
speed data, electrical power load data and electricity price data,
which are all crucial for planning and managing a power grid [13].
To be specific, firstly, wind energy exhibits the most consistent and
rapid deployment of power generating capacities than any other
renewable energy resources [14]. In 2015, the global wind power
industry reached an annual market growth of 20% with the
installation generating units having more than 60 000MW capac-
ities. In China alone, the total capacity of new installations made by
the wind power industry was 30 500MW. By the end of 2015, the
total global capacity reached 432 419MW, gaining a cumulative
growth of 17% [15]. However, the intermittent and stochastic
characteristics of wind speed pose many challenges, i.e., the in-
crease of costs and the decrease of reliability and stability of EPS
[16]. One way to tackle these challenges is to improve forecasting
accuracy for wind speed and wind power [17]. Secondly, the basic
information for establishing the scheduling plan and reducing
management riskdwhich is a decisive part of EPS riskmanagement
[18]dincludes future changes in the power load series. Evidently, if
the forecasting accuracy of the electrical power load could be
improved, then enormous economic benefits could be achieved
[19]. Finally, the cost of electricity is related to the aspects of con-
sumption as these play vital roles in balancing the generation and
consumption of electricity. Thus, a highly accurate cost forecasting
is of great significance for the whole EPS and electricity market
[20].

As discussed above, an effective forecasting method is one of the
most crucial tools employed in EPS management [21]. However,
despite its significance, relevant research for the whole EPS is still
poor. More specifically, most recent analyses are focused on
modeling individual signals, with either wind speed or electrical

power load dominating. Therefore, it is quite urgent and necessary
to develop a novel and robust forecasting framework for these
three key signals of EPS. Depending on the computational principle
involved, forecasting algorithms can be classified into four cate-
gories: statistical, physical, artificial intelligence, and hybrid
algorithms.

Statistical algorithms attempt to find the relationship between
past and future values in a time series, and to develop statistical and
mathematical models for better real-time forecasting [22]. The
forecasting performance of statistical models can be improved
under the condition that input variables are convergent in the
normal distribution [23]. The typical statistical model, autore-
gressive integratedmoving average (ARIMA), is widely employed in
the forecasting fields, such as short-term load forecasting [24],
wind speed forecasting [25], electricity demand forecasting [26]
and electricity price forecasting [27]. Physical algorithms utilize
physical variables, such as temperature and humidity, to achieve
time series forecasting [22]. However, the physicalmodel consumes
large amounts of computing resources. The numerical weather
prediction (NWP) model, acknowledged as one of the most widely
used physical forecasting model for wind speed forecasting [28],
electricity demand forecasting [29], wind power forecasting [30],
and wind resource assessment [31], is designed to solve atmo-
spheric equations and identify atmospheric changes. To the best of
the knowledge of the authors, artificial intelligence algorithms have
been widely employed in many fields, including electric load
forecasting [32,33], wind speed forecasting [34,35], electricity price
forecasting [36], assessment of wind resources [37], energy opti-
mization and analysis modeling [38], optimization of trans-
esterification process [39], analysis and forecasting of oil
consumption [40] and so on, mainly because of the flexibility,
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