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a  b  s  t  r  a  c  t

This  paper  proposes  a methodology  for  compression  of  electrical  power  signals  from  waveform  records  in
electric  systems,  using  genetic  algorithm  (GA)  and  artificial  neural  network  (ANN).  The genetic  algorithm
is used  to  select  and  preserve  the  points  that  better characterize  the  waveform  contours;  and  the artificial
neural  network  is used  in  the  compression  of  other  points  as well  as  on  the  signal  reconstruction  process.
Thus,  the  data  resulting  from  the  proposed  methodology  are  formed  by  a part  of  the  original  signal  and  by
a compressed  complementary  part  in the  form  of synaptic  weights.  The  proposed  methodology  selects
and preserves  a percentage  of the  original  signal  samples,  which  are  aspects  not  explored  in  the  literature.
The method  was  tested using  field  data  obtained  from  an  oscillographic  recorder  installed  in  a  230  kV
electrical  power  system.  The  results  presented  compression  rates  ranging  from  8.59:1.00  to  24.16:1.00
for  preservation  rates  ranging  from  2.5%  to  10%,  respectively.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Digital Fault Recorders (DFRs) and Digital Protection Units
(DPUs) are widely used in electrical power systems to record volt-
age and current waveforms and digital signals (from protection
functions, circuit breakers, and others) during disturbance occur-
rences in electrical power systems. The samples are acquired with a
good time resolution for most disturbances detection and analysis
applications [1]. In many applications, the information from oscillo-
graphic data can be used to detect faults occurrences in the electric
system, providing information about their duration, severity and
type (one-phase, two-phase, three-phase faults), their location,
and even relays and circuit breakers functioning performances [1].
These applications make oscillographic data records very important
to power systems operation, especially in post-mortem analysis.

Since 1980, the number of waveform records has increased due
to expansion of the electrical power systems and to investments
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Pós-Graduaç ão em Engenharia Elétrica – PPGEE, Av. Augusto Correa, 01 (Guamá) –
Campus Universitário do Guamá, CEP: 66075-110, Belém, Brazil.

E-mail addresses: fabiola.ufpa@yahoo.com.br, fabiola.ifpa@yahoo.com.br
(F.G. Noronha Barros), wasf.ifpa@gmail.com (W.A.d.S. Fonseca), bira@ufpa.br
(U.H. Bezerra), mvan@ufpa.br (M.V.A. Nunes).

in the installation of DFRs and DPUs. In this scenario, the use of
data compression techniques is very timely. Ref. [2] presented in
2014 a review of the main compression techniques devised for
electric power signal waveforms providing an overview of the
achievements obtained in the past decades. The methodologies
for compression of electrical power signals, discussed in Ref. [2]
are based on: LZW technique (Lempel-Ziv-Welch) [3,4]; Discrete
Cosine Transform [5]; Transform Coding [6–12]; Approach Huff-
man  Coding [4,13,14]; EZW (Embedded Zero-tree Wavelet) [15,16];
Matching Pursuits Algorithm [17,18]; Discrete Cosine Transform
[19]; Wavelet Packet Transform [20–30]; DWT  (Discrete Wavelet
Transform) [31]; Wavelet Transform and Spline Interpolation and
neural networks based bit allocation procedure [32–34]; and MDL
(Minimum Description Length) [35] for the compression of image
signals.

The lossy compression methodologies cited previously do not
have the ability to select and preserve the points that better charac-
terize the original signal contours. Preserving these points means
preserving the information that characterizes the original signal,
that is, for these points there is no loss of information. Consid-
ering this aspect, this paper proposes an innovative strategy that
employs genetic algorithm (GA) and artificial neural network (ANN)
for lossy compression of electrical power signals. This method
uses GA to select a percentage of the samples (points) that better
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characterizes the original signal contours, and an ANN to compress
and decompress the other points. Selecting samples (points) that
better characterize the original signal contours and preserving a
percentage of the original signal are aspects not explored in the
examined literature. Additionally, as can be seen in references cited
previously, lossy compression methodologies do not use GA, and
neither GA and ANN, in conjunction, as compression and decom-
pression tools.

2. Material and methods

2.1. Data compression using genetic algorithm and artificial
neural network

The motivation for using genetic algorithm and artificial neural
network for compression and decompression of electrical power
signals is due to the fact that genetic algorithm is an efficient search
technique in exploring the solutions space to obtain solutions close
to the optimal one [36], in addition to artificial neural network abil-
ity to learn and generalize, as well as by its failure tolerance and
flexibility characteristics [37]. In addition, neural networks have
been applied successfully in several other problems such as pre-
sented in Refs. [38–41].

In the proposed methodology GA is used to select which are
the points that better characterize the waveform contours, and the
ANN acts as an interpolator for the points selected by the GA.

The method is divided into two modules: the first one, presented
in Fig. 1, is responsible for data compression, and the second one,
presented in Fig. 2, is responsible for data decompression.

Block (a) (Fig. 1) decodes the points stored in the COMTRADE
file that contains voltage or current waveforms recorded during the
event. These points, represented in Fig. 1b, form the search space,
or universal set U, of the GA. The GA (Fig. 1c) aims to select a set
S of points that better characterizes the contours of the current
or voltage signals. Therefore, each chromosome must represent a
set of points, as a possible candidate for the solution. A Multilayer
Perceptron ANN is trained to perform interpolation between the
points selected by the GA. The training process uses the points of
set S (Fig. 1d) and the points of set T (Fig. 1e), complement of set S in
U. The artificial neural network training (Fig. 1f) produces synaptic
weights values (Fig. 1g) that contain information about the points
not chosen by the GA, so as to allow the reconstruction of voltage or
current signals by interpolation. Finally, the points selected by the
GA and the neural network synaptic weights form the compressed
signal (Fig. 1h).

The second module decompresses voltage or current signals. To
rebuild the signals, the second module uses the synaptic weights
(Fig. 2a) adjusted in the first module, and the points in set S (Fig. 2b),
that were selected by the GA. The ANN uses the synaptic weights
adjusted in its structure and the points of set S as input signals.
The ANN (Fig. 2c) determines, by interpolation, an approximation
of the complementary set (set T) of S, called T’ (Fig. 2d). At the end of
the process, it is accomplished a union operation (Fig. 2e) between
sets T’ and S (Fig. 2b), resulting in set U’ whose points form the
decompressed signal (Fig. 2f).

2.2. Chromosome representation

The chromosome representation in this work consists of a way
to represent the points to be selected by the GA. The ordinates of the
points are the values of voltage or current signals. The abscissas are
values that represent the time when each ordinate was  sampled.
As voltage and current signals are sampled sequentially over time
and with fixed sampling frequency (f ), the abscissa values form an
arithmetic progression with ratio equal to �t  = 1⁄f . Therefore, the

Fig. 1. Block diagram of the methodology for compression of electrical power signals
from COMTRADE file.

abscissa value of each point is a function of the sample position,
defined by the sampling sequence, as represented in Eq. (1).

t (n) = t (1) + (n − 1) · �t  (1)

Where:
n: abscissa position in the sampling sequence;
t (n): abscissa corresponding to position n in the sampling

sequence;
t (1): abscissa corresponding to position n = 1 in the sampling

sequence; and
�t: sampling period.
The sampled signal meets the concepts of function given in Ref.

[42], and there is a two-way relationship, given in Eq. (1), between
the abscissas and their positions in the sampling sequence. Thus,
the points selected by the GA can be represented in the chro-
mosome by their positions n in the sampling sequence. So, the
chromosome is divided into genes (Fig. 3), where each gene encodes
the abscissa position by 0 s and 1 s.

The number of bits in each gene is defined in Eq. (2) as:

Qbits = log2
[(
Vupper − Vlower

)
· 10ps + 1

]
(2)

Where:
Qbits: number of bits of the gene;
Vlower: lower value of the range

[
Vlower, Vupper

]
, and it is equal

to 1 because it is the first sample;
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