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A B S T R A C T

Multi-objective stochastic problems are important problems in practice and are often solved through multi-
objective evolutionary algorithms. Researchers have developed different noise handling techniques to improve
the efficiency and accuracy of such algorithms, primarily by integrating these methods into the evaluation or
environmental selection steps of the algorithms. In this work, a combination of studies that compare integration
of different computing budget allocation methods into either the evaluation or the environmental selection steps
are conducted. These comparisons are performed on stochastic problems derived from benchmark multi-
objective optimization problems and consider varying levels of noise. The algorithms are compared in terms of
both proximity to and coverage of the true Pareto-optimal front and sufficient studies are performed to allow
statistically significant conclusions to be drawn. It is shown that integrating computing budget allocation
methods into the environmental selection step is better than integration within the evaluation step.

1. Introduction

Real-world optimization problems are often multi-objective and
stochastic problems [1,2]. Multi-objective evolutionary algorithms
(MOEAs) are widely applied to solve those problems [3]. MOEAs
combine operators such as mating selection [4], which selects child
genes, crossover, and mutation to construct new generations of
individuals. Among MOEAs, popular elitist approaches archive non-
dominated solutions from the previous generation and combine them
with non-dominated solutions from the current generation to produce
the subsequent generation, a process which is referred to as environ-
mental selection [4].

Researchers have developed different noise handling techniques to
solve stochastic problems, aiming to improve the accuracy and
efficiency of the algorithms. For example, a probabilistic method to
improve sampling using loopy belief propagation for probabilistic
model building genetic programming is described in [5]. Population
statistics based re-sampling technique is introduced in [6] with the
particle swarm optimization algorithm to solve stochastic optimization
problems. For the elitist MOEAs, because of the stochastic nature of the
objective functions, MOEAs must perform repeated computationally
expensive samples in order to assess the fitness of each individual. The
noise handling techniques seek to obtain more accurate results with
fewer total evaluations. For example, the optimal computing
budget allocation (OCBA) method proposed in [7] is integrated into

the evaluation procedure to reduce the computing cost in [8]. In [9],
fitness inheritance from parent genes is proposed to reduce the
computational intensity required for evaluation. A probabilistic method
based on statistical analysis of dominance is used to estimate Pareto-
optimal front in [10]. In [11], confidence-based dynamic re-sampling is
proposed to improve the confidence of Pareto ranking. A reliability-
based optimization method which utilizes mathematical approxima-
tions of a solution's reliability to integrate into evolutionary algorithms
is described in [12]. Optimal design considering the worst-case
scenario for safety can be approached by applying anti-optimization
factors into stochastic optimization problems [13]. A noise-aware
dominance operator is integrated into the mating selection in [14].
However, due to the nature of the elitist MOEAs, environmental
selection plays a more critical role than mating selection because it
controls the evolving set of non-dominated solutions [15].

Herein, a fundamental question regarding the application of
computing budget allocation (CBA) methods to MOEAs is considered.
The CBA methods refer to methods of allocating a fixed number of total
samples to a pool of individuals in the solution set of a stochastic
problem. The effect of integrating CBA methods in either the evaluation
or environmental selection on the accuracy of the MOEA is examined.
In previous work with re-sampling applied as a noise handling
technique, it is proposed either in evaluation [8] or in environmental
selection [11]. However, there is no clear comparison between these
two techniques; the comparisons focused only on whether the propo-
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sals improved the results or not. There exists no comprehensive study
that examines, for a fixed total computing budget, where the re-
sampling procedure should be integrated to best improve the algo-
rithms. A previous work in [16] proposed integration of CBA techni-
ques into selection procedure instead of evaluation procedure of
genetic algorithm for single-objective stochastic problems and showed
that the selection integration method greatly improved the accuracy of
the algorithm. Inspired by this work, a combination of studies that
compare the alternative approaches to integrating CBA methods into
genetic algorithms (GA), namely evaluation-integrated GA (EIGA) and
selection-integrated GA (SIGA), are described. It is shown that the
SIGA outperforms the EIGA statistically for the reason that the SIGA
allocates fitness evaluations toward specific individuals when the
algorithm needs more information for evolving. Various CBA techni-
ques are compared, including the most basic equal allocation (EQU)
method [17], OCBA method [7,18], and the proportional-to-variance
(PTV) method [19]. These algorithms and CBA techniques are applied
to stochastic multi-objective problems constructed from benchmark
multi-objective optimization problems [20–22]. Numerical experi-
ments are performed, and statistical testing is used to validate the
significance of the comparisons. The results suggest two significant
findings: 1) applying SIGA other than EIGA, the generational distance
(GD) metrics had improved for at least one decimal level to up to two
decimal levels with statistical significance for all the test cases, which
implies that the SIGA method produces more accurate front when
solving multi-objective stochastic problems; 2) even though OCBA
method is a better allocation method for correct selection from a static
pool [7], it performs worse than the EQU and PTV allocation methods
when integrated into an elitist MOEA where the pool changes
dynamically from generation to generation.

The remainder of this paper is organized as follows. First, descrip-
tions of the considered stochastic multi-objective problems and
different CBA methods are given in Section 2. In Section 3, the
structure of the EIGA and SIGA approaches for integrating CBA
methods into GAs are described. Test functions, performance metrics,
and experimental results are presented in Section 4. Conclusion for this
study is in Section 5.

2. Multi-objective stochastic problems and computing
budget allocation methods

The multi-objective stochastic problems and the CBA methods
considered herein are described below.

2.1. Stochastic problem statement

The multi-objective stochastic problems considered herein can be
defined as

J X J X J Xmin ( ), ( ),…, ( ),
X

H1 2 (1)

where X is the (possibly multi-dimensional) decision variable, J1, J2, …,
and JH are the H objectives to be minimized,
J X E L X ξ l H( ) = [ ( , )], ∈ {1, 2,…, }l l , L (·,·)l is the sample performance
of lth objective, and ξ is a random variable describing the problem
noise. For the test problems considered herein, Noise can be intro-
duced in variable values or environment levels and can follow different
kinds of distributions. The stochastic nature of problems varies from
case to case, depending on application details and difficult to general-
ize. For the problems considered herein, the noise for each objective is
modeled with additive independent and identical Gaussian distribu-
tions, with the noise sampled at each function evaluation. It is also
assumed that such a problem is unconstrained in the sense that any
constraints that bind the solution are appropriately penalized in L (·,·).

For a deterministic multi-objective problem where J X L X( ) = ( )l l ,
the Pareto optimal front [23] is the complete set of non-dominated

solutions. A solution for the multi-objective problem is defined as a
non-dominated solution if it is not dominated by any other solutions. A
solution a dominates solution b if J a J b l H( ) ≤ ( ) ∀ ∈ {1, 2,…, }l l and

l H∃ ∈ {1, 2,…, } such that J a J b( ) < ( )l l . For the non-dominated solu-
tions, each objective is minimized to the extent that it is not possible to
further minimize one objective without making one or more other
objectives bigger (worse).

For a stochastic multi-objective problem, the fitness function of
each objective can only be estimated by a limited number of random
samples. Mean value from the random samples is used to evaluate the
fitness in this study. For a certain number of realistic problems, it is
assumed that the evaluation of the samples takes far more computation
time and effort than the algorithm itself. It is desired to be able to
allocate the samples, or the total computing budget, appropriately to
obtain the best approximation of the fitness function when evaluates,
thus to obtain the best approximation of the Pareto optimal front when
the search terminates. The quality of a Pareto optimal front approx-
imation is measured by both its proximity to the true front and the
degree to which it covers the true front.

2.2. Computing budget allocation methods

The CBA methods determine, given a total number of samples, how
samples should be allocated to each individual in the solution set. The
motivation of applying CBA methods to a stochastic problem is to
improve the accuracy of solving a stochastic problem and avoid wasting
samples on unwanted individuals. Various CBA methods have been
studied, and the three such CBA methods applied in this study are
discussed below. For each of these methods, it is assumed that N
samples are being allocated among k individuals.

2.2.1. Equal allocation method
The simplest allocation technique to conduct sampling is the EQU

technique, and it often serves as a benchmark for comparison [24]. The
available computing budget is equally distributed to all individuals:

n N
k

= ,∼
i (2)

where n∼i is the number of additional samples to be allocated to
individual i.

2.2.2. Optimal computing budget allocation method
The OCBA method [7] for multi-objective optimization is based on

maximizing the asymptotic probability that the selected subset is the
non-dominated set. One such implementation is described below.

For a set of unique individuals S, SP is defined as the non-dominated
set, and SD is defined as the dominated set. In deterministic problems,
SP and SD can be determined by non-dominated sorting [25]. The OCBA
allocation rule aims to maximize the probability of correctly selecting
the Pareto optimal set in stochastic problems.

For an individual i, which has previously been sampled, Lil is the
sample mean, and σil

2 denotes the sample variance corresponding to the
lth objective. For two individuals, i and j, the difference of sample
means for objective l is expressed as

δ L L= − .ijl jl il (3)

The individual that dominates i with the highest probability is
approximated as
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where lj
i denotes the objective for which j is better than i with the lowest

probability and can be calculated as
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