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A B S T R A C T

This paper presents the results of two novel approaches to measure the soot propensity of a flame and their
comparison with the Line of Sight Attenuation (LOSA) method. Both approaches are based on the detection of
the Smoke Point Height (SPH), concept used to determine when a flame is in a sooting state. The first approach is
based on the detection of morphological changes in the flame, identified through their amplification via the
Eulerian Video Magnification algorithm. Results show an effective amplification of the flame geometry, allowing
the visualization of variations on the flame tip unable to be detected by the naked human eye and therefore the
detection of SPH. The second approach is based on the application of Artificial Intelligence models to classify
flame images regarding their sooting propensity, taking advantage of the knowledge acquired from a referential
data set. Both approaches provide an accurate classification when compared to the conventional method of
LOSA. Furthermore, both approaches show a greater implementation potential in practical combustion devices
than the conventional method of LOSA, due to their reduced hardware and technical requirements.

1. Introduction

Combustion diagnostics has always been an active research area for
many scientists and engineers from different fields, such as chemistry,
physics, and mechanics,among others. In this sense, several methods
have been developed to obtain information about the current state of a
combustion process, motivated by improving its efficiency, decreasing
its environmental impact, or optimizing key process variables [1–4].
Several techniques have been developed based on flame chemilumi-
nescence field measurements, using optical sensors such as cameras,
spectrometers, photo-diode arrays, and even combinations of them
[5,6,2,7]. Soot formation in the flame is related to high and undesirable
particulate matter emissions to the atmosphere [8], and therefore
stands as a relevant parameter to be controlled in any given combustion
process. Thus, of these techniques are based on the determination of the
flame’s Sooting Propensity, defined as the ratio between the formation
(Sfor) and oxidation (Sox) reactions occurring within the flame [9]. An
example of this is the approach presented in [10] that defines the
Sooting Propensity of a fuel in terms of its Smoke Point Height (SPH),
that denotes the specific moment when the flame opens its tip and re-
leases soot, as described in [11]. Additionally, this specific moment is
defined as the Smoke Point. Smoke Point Height has also being found to

relate a fuel’s sooting tendency with other combustion-relevant para-
meters such as Soot Volume Fraction [12], or Heat Release Rate [9].
Unfortunately, due to the subtle nature of the changes in the flame used
as study variables, the evaluation of SPH is highly subjective and un-
certain. In addition, SPH analysis requires expert knowledge and large
measurement times. In order to improve the quality of these results, it is
necessary to incur in more complex and computationally demanding
methods.

The main contribution of this work is to present two novel ap-
proaches to evaluate soot propensity based on flame images processing.
The first approach is based on a flame image magnification algorithm
presented in [13]. The second approach is based on the capabilities of
artificial intelligence models to solve a classification problem of sooting
and non-sooting flame images, under the assumption of a previously
available flame images data set. These novel approaches will be
benchmarked against conventional Line of Sight Attenuation measure-
ments (LOSA).
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2. Materials and methods

2.1. Line of sight attenuation fundamentals

To determine the release of soot from the flame, the radially-in-
tegrated soot volume fraction β is evaluated according to the following
expression (Eq. (1)) [14],
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where = … −i N0,1, , 1 is a discretization index, r is the distance from the
flame’s symmetry axis,and f r( )s is the local soot volume fraction, de-
termined from the spectral absorption coefficient (κs λ, ) distribution, as
presented in Eq. (2).
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In this expression, Cλ is the absorption function, determined as
presented in Eq. (3),
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where ns and ks are the real and complex part of soot’s refractive index,
respectively. These parameters can be evaluated using Chang and
Charalampopoulos correlations [15].

The spectral absorption coefficient (κs λ, ) on the other hand, can be
determined by means of its relation with the total fraction of light
transmitted through the flame (τ), as presented in Eq. (4) [9,16,17],
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The total fraction of light τ is determined through the LOSA mea-
surements [18]. In synthesis, once τ is retrieved from the LOSA mea-
surements, κλ is evaluated from Eq. (4). The parameter Cλ is obtained
from Eq. (3), and along with κλ allows to calculate fs from Eq. (2). Fi-
nally, with f β,s is obtained from Eq. (1).

Furthermore, in order to compare the integrated soot volume frac-
tion for different fuel flows, the vertical coordinate z was non-di-
mensionalized according to Eq. (5) [14]:

=η z
V ̇
D

(5)

where V ̇ is the volumetric fuel flow rate in sccm, andD is the diffusion
coefficient. A value of = cm s0.156 /2D was considered [14].

2.2. Eulerian Video Magnification fundamentals

Eulerian Video Magnification (EVM) [13] is a method to amplify
subtle movement variations in an arbitrary object measured with a
digital camera, usually imperceptible to the naked human eye. Fig. 1

shows a schematic of the image processing by EVM. First, EVM receives
a digital video as the input and decomposes it into different spatial
frequency bands. Afterward, a temporal processing is realized on each
spatial band. Temporal processing consider the value of a pixel as a
time series containing the desire amplified movement and noise, then it
is necessary to apply a narrow bandpass filter to extract the frequency
bands of interest and attenuates the noise. The bandpass filter central
frequency parameter is selected, in order to suits the observed phe-
nomenon and retaining only the desired amplified motions of the flame,
which depends on the flame flickering. Finally, the extracted bands are
amplified by a user-defined magnification factor α and then in-
corporated into the original input, generating a video-enhanced se-
quence of the moving object analyzed. EVM will be used to evaluate the
SPH from a series of images of flames, determining the moment at
which the flame tip opens and starts to release soot. The main steps that
are comprehended in this approach are presented next.

2.2.1. Step 1: spatial decomposition
The first step consists of the enhancement of the contours of the

image. This process can be summarized as a reduction and expansion of
the image. Firstly, a flame image reduction it is obtained by applying a
Gaussian pyramid according to Eq. (6), where w m n( , ) is the weighted
average function and g i j( , )l is the value of the level l in the position i j( , )
in the Gaussian Pyramid. Secondly, the image expansion is calculated
based on Eq. (7), where the value L i j( , )l corresponds to the level l in the
pixel i j( , ) on the Laplacian Pyramid. Fig. 2a shows a schematic of the
Gaussian pyramid pixels averaging, and Fig. 2b shows the results of the
application of this Gaussian pyramid. Finally, Fig. 2c shows the result of
image enhancement process, where the flame image contours are am-
plified.
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2.2.2. Step 2: temporal processing
In EVM, movement is approximated through a first order Taylor

series according to Eq. (8) [13], where L x t( , ) is the intensity of the
image in the position x at the time t. Then, an estimated amplified
motion ̂L x t( , )l is obtained by amplifying the movement variation as-
sociated to the derivative term in Eq. (8), as presented in Eq. (9) [13]:
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where =f x L x( ) ( ,0)l and α is a magnification parameter between [10
and 20].

The bandpass filter selection in EVM is application dependent [13],
but for motion amplification as in the case of the flame images, a broad
bandpass is preferred [13]. A simple approach is given by a bandpass
IIR filter, which is obtained by the use of two first-order lowpass IIR
filters with cut-off frequencies wlow and whigh according to the minimum
and maximum feasible flame flickering. The relation between the
coefficients a1 and b0 of a first-order lowpass IIR filter and its filtered
output kΨ( ) is defined in Eq. (10), where ε k( ) is the original time series
representing the pixel temporal response.

= − +k a k b ε kΨ( ) ·Ψ( 1) · ( )1 0 (10)

2.2.3. Step 3: reconstruction
Finally, the enhanced image is obtained by means of concatenation

of the spatial decomposition obtained from step 1 and the motion
amplification obtained from step 2. Fig. 3 presents an example of this
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Fig. 1. Overview of the Eulerian Video Magnification framework.

J. Pino et al. Fuel 225 (2018) 256–265

257



https://isiarticles.com/article/138181

