Engineering Applications of Artificial Intelligence 69 (2018) 147-156

Contents lists available at ScienceDirect

Intelligence

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

An Artificial Intelligence paradigm for troubleshooting software bugs ]

Check for
updates

Amir Elmishali, Roni Stern, Meir Kalech *

Ben Gurion University of the Negev, Department of Software and Information Systems Engineering, Israel

ARTICLE INFO ABSTRACT

Keywords:

Artificial Intelligence
Automated diagnosis
Automated troubleshooting
Software engineering
Software fault prediction

Software bugs are prevalent and fixing them is time consuming, and therefore troubleshooting is an important
part of software engineering. This paper presents a novel paradigm for incorporating Artificial Intelligence (AI) in
the modern software troubleshooting process that can drastically reduce troubleshooting costs. In this paradigm,
which we call Learn, Diagnose, and Plan (LDP), we integrate three Al technologies: (1) machine learning:
learning from source-code structure, revisions history and past failures, which software components are more
likely to contain bugs, (2) automated diagnosis: identifying the software components that need to be modified
in order to fix an observed bug, and (3) automated planning: planning additional tests when such are needed to
improve diagnostic accuracy. Importantly, these Al technologies are integrated in LDP in a synergistic manner:
the diagnosis algorithm is modified to consider the learned fault predictions and the planner is modified to
consider the possible diagnoses outputted by the diagnosis algorithm. The overall solution is demonstrated on
real faults observed in four open source software projects.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Troubleshooting is an important part of software development. It
starts when a bug is detected, e.g., when testing the system, and ends
when the relevant source code is fixed. Key actors in this process are
the tester, who runs the tests, and the developer, who writes the program
and is (hopefully) able to fix bugs (i.e., to debug them). In modern
software engineering, the interaction between tester and developer
during troubleshooting is usually as follows. First, the tester executes
a suite of tests and finds a bug. The tester then files a bug report, usually
in some issue tracking system such as Bugzilla. Later, the bug report is
assigned to a developer, who is tasked to fix it. This usually means first
isolating the bug to find its root cause — the faulty software module that
caused the bug - and then fixing it. The fixed software components are
then committed to a version control system such as Git so that the fix will
be made available to the rest of the development team and eventually in
the next software version deployed. Fig. 1 provides a visual illustration
of this process.

This process is known to be very costly. One reason for this is that
it is often difficult for the developer to reproduce the bug observed by
the tester, because the developer runs on a different machine than the
tester and in a different context. Another reason is that programs are
often large and complex.

To reduce the costs of software troubleshooting we present a novel
paradigm for software troubleshooting that incorporates a helpful

* Corresponding author.

intelligent software agent. This agent employs a range of techniques
from the Artificial Intelligence (AI) literature to improve detection
and isolation of software bugs. First, it learns which source files are
likely to fail by analyzing the source-code structure, revisions history
and past failures. Then, when a test fails, a diagnosis (DX) algorithm
considers the observed tests (failed and passed), as well as knowledge
learned from past data, to suggest possible diagnoses and estimate
their likelihoods. Lastly, if further tests are needed to isolate the faulty
software components, then the Al agent automatically plans a minimal
set of additional tests. After executing these tests, additional diagnostic
information is added and fed to the DX algorithm. This iterative process
continues until a sufficiently accurate diagnosis is found. We call this AI-
integrated paradigm for software troubleshooting the Learn, Diagnose,
and Plan (LDP) paradigm. This process is illustrated in Fig. 2.

LDP consists of three Al components: a learning algorithm, a diag-
nosis algorithm, and a planning algorithm. Each of these components
have been studied individually (Cardoso and Abreu, 2014; Zamir et
al., 2014; Elmishali et al., 2016; Radjenovic et al., 2013), but in this
work we show how they can be integrated into the modern standard
troubleshooting process, exploiting data generated by industry-standard
software engineering tools. Moreover, we show how to modify these Al
components so that they can affect and take advantage of the other Al
components, resulting in an effective synergy between them.

E-mail addresses: amirelm@bgu.ac.il (A. Elmishali), sternron@bgu.ac.il (R. Stern), kalech@bgu.ac.il (M. Kalech).

https://doi.org/10.1016/j.engappai.2017.12.011

Received 25 February 2017; Received in revised form 5 November 2017; Accepted 18 December 2017

0952-1976/© 2017 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.engappai.2017.12.011
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.12.011&domain=pdf
mailto:amirelm@bgu.ac.il
mailto:sternron@bgu.ac.il
mailto:kalech@bgu.ac.il
https://doi.org/10.1016/j.engappai.2017.12.011

A. Elmishali et al.

No
B
med? Issue Tracking Version Control
Tests p System System
Yes l
File Bug Isolate .
Report Bug Fix Bug

Fig. 1. An illustration of the standard workflow for troubleshooting software in current
software companies.

Learn Fault
Prediction Model
No
Bu =
Foungd7 Issue Tracking Version Control
Tests p System System
Yes Send.bug
details
Plan Run DX File Bug .
Tests Algorithm Report Fix Bug
No Bug Yes
Isolated? Send
root cause

Fig. 2. An illustration of the workflow with LDP.

We implemented all LDP components and evaluated them on several
open source software projects: Eclipse CDT (Eclipse CDT), Apache
Ant (Apache Ant), Apache POI (Apache POI), and OrientDB (Ori-
entDB). The results demonstrate that LDP is feasible and effective.
Moreover, the results show that the performance of the individual Al
components of LDP (fault prediction, DX algorithm, and planner) is
improved when they are integrated together as we propose.

To summarize, the contributions of this paper are as follows. First,
we propose the LDP paradigm. Second, we explain how each of the Al
components of LDP can be implemented, and how they can be integrated
together effectively. Third, we demonstrate the applicability of LDP in
practice on real open-source projects with real bugs.

This paper is structured as follows. Section 2 describes the proposed
LDP paradigm, where its subsections Sections 2.1-2.3) describe the Al
components of LDP and how they integrate. Then, we describe how
we implemented LDP and present the results of our empirical study
(Section 3). Section 4 presents related work. Finally, Section 5 concludes
with directions for future work.

2. Learn, diagnose, and plan (LDP)

LDP is a paradigm that involves both human and AI elements. The
humans in the loop have one of the following roles.

« Tester. The tester is the one that observed and reported the
abnormal system behavior. Under this definition, a tester can
be a human quality assurance (QA) professional, a user of the
system, or even an automated testing script.

« Developer. This is the person(s) in charge of developing the
software. Its role in LDP is to fix given software components
(file/method/line of code) that were identified as faulty.

The Al elements of LDP are:

« Fault predictor. This is an algorithm or a model that estimates
the probability of each software component to be faulty. Im-
portantly, the fault predictor does not consider the observed

148

Engineering Applications of Artificial Intelligence 69 (2018) 147-156

abnormal behavior of the system. This is important as the
probabilities generated by the fault predictor will be used as
priors for the diagnoser (this is explained later in greater detail).
The fault predictor can consider all data that does not include
the current observations, such as historical data — past software
versions and bugs — and static code analysis, e.g., various code
complexity measures.

« Diagnoser. This is an algorithm that accepts as input the ob-
served abnormal behavior of the system as reported by the
tester, and outputs one or more possible explanations for that
behavior. Each of these explanations, referred to as diagnoses,
is an assumption that a specific set of software components is
faulty. The diagnoser is expected to output for every diagnosis
an estimate of the probability that it is correct.

« Test planner. This is an algorithm that accepts the set of
diagnoses outputted by the diagnoser, and, if needed, suggests
additional tests that the tester should perform in order to find
the correct diagnosis, i.e., the software components that caused
the abnormal system behavior.

LDP is intended to help the developer to debug an observed bug by
automatically diagnosing it and, if needed, intelligently guiding a tester
to perform additional specially tailored tests to collect further diagnostic
information. The first stage in LDP, which is done periodically before
a bug is observed, is to learn a fault predictor based on information
about the past failures. This is done using standard machine learning
techniques. Then, when a bug is observed and reported by the tester,
it is inputted to the diagnoser that outputs a set of possible diagnoses.
The diagnoser does this by applying an automated diagnosis algorithm
that considers both the observed system behavior and the probabilities
generated by the fault predictor. If a single diagnosis is found whose
probability of being correct is high enough (how much is “high enough”
is a parameter), then this diagnosis is passed to the developer for fixing.
If not, then the test planner proposes an additional test to be performed
to the tester to narrow down the set of possible diagnoses. This initiates
an iterative process in which the test planner plans an additional test,
the tester performs it, and the diagnoser recomputes the set of possible
diagnoses and their likelihoods. This process stops when a diagnosis is
found whose probability of being correct is high enough. At this stage a
bug report is added to the issue tracking system and the diagnosed bug
is given to a developer to fix the (now isolated) bug. This entire process
is illustrated in Fig. 2.

Next, we describe how the AI components of LDP - fault predictor,
diagnoser, and test planner — are implemented in practice.

2.1. Software fault prediction

Fault prediction in software is a classification problem. Given a
software component, the goal is to determine its class — healthy or faulty.
Supervised machine learning algorithms are commonly used to solve
classification problems. They work as follows. As input, they are given
a set of labeled instances, which are pairs of instances and their correct
labeling, i.e., the correct class for each instance. In our case, instances
are software components and the labels are which software component
is healthy and which is not. They output a classification model, which
maps an (unlabeled) instance to a class. This set of labeled instances is
called the training set and the act of generating a classification model
from the training set if referred to as learning.

Learning algorithms extract features from a given instance, and try
to learn from the training set the relation between the features of
an instance and its class. A key to the success of machine learning
algorithms is the choice of features used. Many possible features were
proposed in the literature for software fault prediction.

Radjenovic et al. (2013) surveyed the features used by existing
software prediction algorithms and categorized them into three families:

« Traditional. These features are traditional software complexity
metrics, such as number of lines of code or more sophisticated



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/138196

