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a b s t r a c t

The results presented in this article demonstrate the potential of artificial intelligence tools for predicting
the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to
600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the
modeling of the impeller power as a function of operation conditions and wet granule properties,
establishing the critical variables that affect the response and obtaining a unique experimental poly-
nomial equation (transparent model) of high predictability (R2 > 86.78%) for all size equipment. Gene
expression programing allowed the modeling of the granulation process for granulators of similar and
dissimilar geometries and can be improved by implementing additional characteristics of the process, as
composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the
methodology proposed here can be applied to understand and control manufacturing process, using any
other granulation equipment, including continuous granulation processes.

© 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

Introduction

Scaling up of high shear granulation process is of high relevance
within the pharmaceutical and food industry. There is an extensive
work about the control of wet granulation processes and the scale-
up methodologies in the literature.1-3 Scale-up methodologies can
be classified into 2 main categories4: (a) methods based on engi-
neering principles that apply fixed mathematical rules to process
parameters and (b) empirical methods that adjust process param-
eters in order to maintain the granule attributes across scales.

It has been pointed out that the scale-up granulation process is
facilitated by maintaining geometric, dynamic, and kinematic
similarity. Based on this premise, the companies design the
equipment (bowl height/diameter ratio, impeller design) to achieve
geometric similarity. On the other hand, the dynamic and kine-
matic similarities are directly related to the control of impeller
speed, which determines the forces and collision energy experi-
enced by the granules, and the particle velocity inside the granu-
lator, respectively.

Several authors5-8 have followed the method proposed by Cliff
and Parker9 for predicting the behavior of plant scale equipment

from the information generated from laboratory scale apparatus.
The approach was based on the classical dimensionless Power
number/Reynolds number relationship.10 However, the universality
of the concept of using dimensionless numbers to predict scale-up
parameters for all types and designs of mixers used in pharma-
ceutical granulation could not be completely established, it being
necessary to introduce corrections in the equation to account for
geometric differences between mixers (e.g., shape factors) or
operating conditions (e.g., batch size in proportion to the overall
shape of the mixer). This fact pointed to the existence of extremely
complex non-linear interactions between the parameters studied,
and made it difficult to obtain a general model for the granulation
process.

Soft computing methods offer novel solutions to improve
modeling and control in pharmaceutics.11 Among the available
artificial intelligence tools, artificial neural networks have been
widely used for modeling several pharmaceutical process.12,13

Despite its unquestionable utility to facilitate understanding of the
processes and predict results without any mechanistic assumption,
artificial neural networks have the disadvantage of generating black-
box models. Gene expression programing (GEP) introduced by
Ferreira14,15 has been proposed as a technology to overcome this
limitation and to solve problems within the pharmaceutical field, as
it is able to provide high predictive experimental equations relating
the variables, and hence to generate transparent models. A complete
explanation about thismethodology and its application formodeling
formulations can be found in Colbourn et al.16
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To our knowledge, there is no example in the literature of the
application of artificial intelligence tools in the scale-up of high
shear granulation process. The hypothesis of the present work was
that it is possible to apply those technologies, particularly GEP, to
develop a unique and useful model for describing the impeller
power of high shear mixer granulators of different scales from 25 to
600L as a function of process variables and formulation properties.
The model should allow defining optimal endpoint of different
scales on mixer granulators, and hence help in the scaling up
process.

Experimental

Database

In this study, results from experiments carried out in 4 fixed size
bowl mixer granulators (Fielder PMA; Aeromatic-Fielder Ltd.) of
nominal volumes 25, 65, 100, and 600L were used. PMAs 25L, 100L,
and 600 L are geometrically similar in all dimensions, but PMA 65L
is not. PMAs 65L, 100L, and 600L have variable speed motors on
both impeller and chopper, and PMA 25L has 2 speeds. In all cases,
chopper speed was kept constant at 1500 rpm. Impeller diameters
(D, m) were noted.

Weight/weight composition of the model formulation was as
follows: 80% lactose (450 mesh; DMV International), 18% maize
starch, and 2% pregelled starch (both from National Starch and
Chemical Company Ltd.). Batch sizes were selected in order to
maintain the proportion of the volume of mixer (0.3 kg/L). They
were 7.5, 16.25, 30, and 180 kg.

The rawmaterials were introduced into the bowl and dry mixed
for 2 min at a specific impeller speed (N, rps). The impeller power
was noted and water was then sprayed on at a constant rate.
Samples of wet mass were taken at pre-set times equivalent to
different endpoints as given by the load on the impeller motor. The
amount of liquid added was estimated (%liq) and the height of the
wet bed in the mixer was measured (h, m). The differential power
for each sample was calculated (DP, W). Due to the size of the bowl
of PMA 25L machine, it was not possible to take multiple samples
from a single mix, and hence it was necessary to perform individual
experiments for each endpoint.

The bulk density of the collected samples (r, kg/m3) was
determined by weighing a glass vessel of known volume, empty
and filled with wet mass flush with the rim as previously described
by Cliff and Parker.9

The consistency of wet masses (h, Nm) was measured using a
mixer torque rheometer (Caleva MTR; Sturminster Newton) as
described previously by Hancock et al.17 Briefly, to generate a
baseline torque value, the machine was run empty at 52 rpm for
20 s. Then 30 g of wet mass sample was added and the instrument
was allowed to run for 30 s before initiating the data capture pro-
cess (30 s). Each measurement was conducted in duplicate.

All results are shown in Table 1.

Endpoint Predictions Based on Dimensionless Numbers

Following the methodology previously suggested by several
authors5,6 for predicting the behavior of plant scale equipment
from information generated at laboratory scale machines, 3
dimensionless numbers were calculated. The Power number (Np) is
defined as DPg/rN3D5, the Reynolds number (NRe) is defined as
D2Nr/h, and the Froude number (NFr) is defined as N2D/g, wereDP is
the differential impeller power (W), N the impeller speed (rps), D
the impeller diameter (m), g the gravity (9.8 m/s2), r the wet mass
bulk density (kg/m3), and h (Nm) the wet mass consistency ob-
tained by mixer torque rheometry.

Np ¼ fn{NRe, NFr, h, D} functions were established for each high
shear mixer.5,6 The regression analysis of Ln/Ln plot for the 3
equipments together allowed Equation 1 to be obtained:

Np ¼ 273:96½NRe � NFr � h=D��0:712 (1)

Using Equation 1, impeller power values were predicted for each
condition of the mixer operation and wet granule properties
measured.

Artificial Intelligence Tools: Neurofuzzy Logic and Gene Expression
Programing

Two commercial software packages FormRules® v4.03 and
INForm® v5.01 (Intelligensys Ltd., North Yorkshire, UK) which
implement neurofuzzy logic and GEP technologies, respectively,
were used in this study.11,16

The FormRules model was obtained using results from the PMA
25L, 100L, and 600 L experiments (41 records). The mixer volume,

Table 1
Database Including Results From Experiments in 25L, 65L, 100L, and 600L Mixer
Granulators

Equipment D (m) N (rps) %Liquid h (m) r (kg/m3) h (Nm) DP (W)

PMA 25L 0.404 4.78 7.56 0.12 425 0.051 55
PMA 25L 0.404 4.78 11.72 0.12 452 0.117 451
PMA 25L 0.404 4.78 17.00 0.10 536 0.147 534
PMA 25L 0.404 4.78 22.30 0.08 642 0.169 1051
PMA 25L 0.404 4.78 25.45 0.07 776 0.241 1282
PMA 25L 0.404 4.78 18.06 0.11 518 0.165 528
PMA 25L 0.404 9.53 9.45 0.11 448 0.101 995
PMA 25L 0.404 9.53 13.60 0.10 525 0.107 2100
PMA 25L 0.404 9.53 7.46 0.12 434 0.070 187
PMA 25L 0.404 9.53 17.38 0.08 649 0.156 2350
PMA 100L 0.647 2.63 5.57 0.20 450 0.100 182
PMA 100L 0.647 2.63 11.13 0.21 440 0.134 661
PMA 100L 0.647 2.63 16.70 0.20 490 0.214 775
PMA 100L 0.647 2.63 22.27 0.17 587 0.213 1186
PMA 100L 0.647 2.63 27.50 0.13 800 0.350 2326
PMA 100L 0.647 3.75 5.00 0.18 490 0.077 224
PMA 100L 0.647 3.75 10.00 0.21 430 0.154 960
PMA 100L 0.647 3.75 15.00 0.21 460 0.194 1184
PMA 100L 0.647 3.75 20.00 0.17 586 0.190 1600
PMA 100L 0.647 3.75 25.00 0.13 770 0.259 3136
PMA 100L 0.647 5.16 4.03 0.18 480 0.087 175
PMA 100L 0.647 5.16 8.06 0.21 430 0.112 1051
PMA 100L 0.647 5.16 12.09 0.21 440 0.143 1357
PMA 100L 0.647 5.16 16.13 0.20 480 0.165 2014
PMA 100L 0.647 5.16 20.16 0.16 610 0.113 3765
PMA 100L 0.647 5.16 21.50 0.14 700 0.165 4422
PMA 600L 1.18 2.87 4.31 0.31 536 0.055 700
PMA 600L 1.18 2.87 8.62 0.35 497 0.095 2500
PMA 600L 1.18 2.87 12.93 0.38 476 0.131 5600
PMA 600L 1.18 2.87 17.25 0.34 549 0.145 6700
PMA 600L 1.18 2.87 21.57 0.31 614 0.154 8700
PMA 600L 1.18 2.87 24.44 0.28 698 0.179 16,700
PMA 600L 1.18 2.87 26.60 0.28 713 0.220 19,600
PMA 600L 1.18 1.23 4.96 0.31 544 0.066 500
PMA 600L 1.18 1.23 9.92 0.38 460 0.103 2100
PMA 600L 1.18 1.23 14.88 0.38 478 0.136 2400
PMA 600L 1.18 1.23 19.83 0.35 546 0.152 3400
PMA 600L 1.18 1.23 24.79 0.29 670 0.161 4800
PMA 600L 1.18 1.23 27.69 0.27 747 0.261 6500
PMA 65L 0.503 4.33 5.07 0.16 473 0.069 0
PMA 65L 0.503 4.33 10.15 0.20 411 0.091 470
PMA 65L 0.503 4.33 15.23 0.19 437 0.095 740
PMA 65L 0.503 4.33 20.30 0.17 510 0.155 1070
PMA 65L 0.503 4.33 25.38 0.12 724 0.221 2030
PMA 65L 0.503 6.93 4.87 0.17 457 0.057 10
PMA 65L 0.503 6.93 9.89 0.20 411 0.097 1270
PMA 65L 0.503 6.93 14.84 0.20 433 0.119 1870
PMA 65L 0.503 6.93 19.79 0.14 603 0.145 3770
PMA 65L 0.503 6.93 24.33 0.13 706 0.224 4570
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