Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems

Bill Marion a,*, Benjamin Smith b

a National Renewable Energy Laboratory, Golden, CO 80401, USA
b Enphase Energy, Inc., Petaluma, CA 94954, USA

1. Introduction

Ground-based solar resource measurements are critical for developing photovoltaic (PV) projects. Unfortunately, accurate measurements at most locations are lacking due to the cost of solar radiation measurement equipment, which can be more than $40,000 for a first class station. To provide low or no-cost solar resource data traceable to a ground-based physical measurement at a nearby location, we have been developing a method to derive solar resource data from PV performance data such as measured by Enphase Energy Inc. micro-inverters, which have been deployed with millions of PV modules and have been providing reliable data with a 5-min temporal resolution since 2011—and for some early systems since 2007.

This work uses PV performance data to back-solve for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI). It required the development of two key methods: (1) determining the global tilted irradiance (GTI), otherwise known as the plane-of-array (POA) irradiance, from the ac power \((P_{ac}) \), and (2) determining the DNI and DHI from the GTI. The DNI and DHI values, or their global horizontal irradiance (GHI) equivalent, may then be used with conventional modeling software, such as PVsyst, Helioscope, and the National Renewable Energy Laboratory’s (NREL’s) System Advisor Model (SAM), to estimate the performance of PV systems of any size, or PV array tilt and azimuth orientation, including tracking.

We recently published a method to determine the DNI and DHI from the GTI when measured with pyranometers (Marion, 2015). It is a modification of the DIRINT model by Perez et al. (1992), which separates input values of GHI into their DNI and DHI components. The modification substitutes GTI for GHI, and adds an iterative procedure to adjust the global clearness index to improve the derived values of DNI and DHI. The resulting model is referred to as the GTI-DIRINT model. The GTI-DIRINT model was validated using GTI values measured with Kipp & Zonen CMP11 and CMP22 pyranometers for three climatically diverse locations: Cocoa, Florida; Eugene, Oregon; and Golden, Colorado. For the GTI measured at a small tilt angle from the horizontal (10°) and south-facing, the deviations between the measured DNI and DHI and the GTI-DIRINT modeled DNI and DHI were essentially the same as those for the DIRINT model when using the GHI for model input. For larger tilt angles from horizontal, the deviations between modeled and measured values were larger, but still reasonable.

* Corresponding author at: 15013 Denver West Parkway, Golden, CO 80401-3305, USA.
E-mail address: bill.marion@nrel.gov (B. Marion).

http://dx.doi.org/10.1016/j.solener.2017.03.043
0038-092X/© 2017 Published by Elsevier Ltd.
from horizontal of 40° and an azimuth angle from north of 210°, with deviations between modeled and measured values of DNI almost twice as great for the south-facing GTIs.

More recently, Gostein et al. (2016) successfully applied the GTI-DIRINT model for use with one-axis tracking PV modules with the axis horizontal and oriented north-south. This orientation results in the PV module being tilted at small angles during midday, a favorable condition because the GTI-DIRINT model is functionally the same as the DIRINT model if the tilt is horizontal and the GTI equals the GHI.

This work developed and validated a method to derive the GTI from the P_{ac} for south-facing PV modules, the optimal orientation based on our previous work, and then to use the GTI-DIRINT model to determine the DNI and DHI. Results are presented for implementing the overall procedure to derive the DNI and DHI from the P_{ac}, and for then using the derived values of DNI and DHI to model the GTI and P_{ac} for various tilted orientations, including non-south-facing and tracking.

Recent work of a related nature includes that of da Costa et al. (2014), where irradiance and temperature are both derived from operating points on the PV module current-voltage curve, but at the expense of interrupting the operation the PV module at its maximum power. The GTI-DIRINT model uses a method similar to that of Yang et al. (2013, 2014), but the iteration procedure uses the anisotropic transposition model of Perez et al. (1990) in place of an isotropic transposition model.

Killinger et al. (2016) provides a power projection method for estimating the performance of one PV system from that of another, which is quite similar to our method. They use the GTI-DIRINT model for one of their variants, and we have adopted their technique of using a quadratic solution to determine the GTI from the P_{ac}, but have added provisions to account for the effect of wind speed on PV module temperature, inverter efficiency as a function of load, and increased reflection losses due to the angle-of-incidence (AOI) of direct and diffuse solar radiation.

Another power projection method uses a “clear sky index for PV” (Engerer and Mills, 2014). The index is determined by dividing the measured PV power by that calculated for clear-sky conditions. To estimate the performance of a nearby PV system, the PV power calculated for the nearby PV system for clear-sky conditions is multiplied by the index. Lonij et al. (2012) uses a similar index to forecast the power output of PV systems. For best results when using these types of indices, the orientation of the PV systems should be similar because the contributions of the direct and diffuse solar radiation are not treated separately. To address this concern, Engerer and Xu (2015) later developed a method to estimate the diffuse fraction from the “clear sky index for PV.”

The following sections discuss the method for determining the DNI and DHI from the P_{ac}, data used for validating the method, implementation of the method, results and their analysis, summary and conclusions from the key outcomes, and future work.

2. Method description

The following sections describe the method’s two key elements: (1) deriving the GTI from the ac power, and (2) deriving the DNI and DHI from the GTI using the GTI-DIRINT model.

2.1. Deriving the GTI from the ac power

The solution for deriving the GTI from the ac power is a two-step process where the dc power (P_{dc}) is first derived from the P_{ac} and then the GTI is derived from the P_{dc}. This is opposite to the normal modeling chain of PV performance software; consequently, inverted PV performance equations are used based on conventional equations for P_{dc} and P_{ac} and PV cell temperature (T). Eq. (1) represents the equation for P_{ac} from the Sandia inverter performance model when using the default values of zero for the Sandia empirical coefficients (King et al., 2007).

\[P_{ac} = P_{dco} \cdot (\frac{P_{dc} - P_{so}}{P_{dco} - P_{so}}). \]

\[(1) \]
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات