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h i g h l i g h t s

� A framework is presented for rapid soil classification for CEB using artificial neural networks.
� The system uses both quantitative and qualitative field data streams to assign a classification.
� Both the quantitative and qualitative filed data streams are critical for accurate classification.
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a b s t r a c t

Compressed earth blocks (CEBs) represent a cost-effective, sustainable, and environmentally-friendly
building alternative to traditional masonry elements. Block performance depends heavily on the qualities
of the soil used and it is important to be able to identify a soil’s qualities rapidly in the field. Soil classi-
fication systems such as the Unified Soil Classification System (USCS) provide standardized methodolo-
gies with which to evaluate the qualities of a soil, however these methods require laboratory space
and specialized equipment which are often unavailable in field conditions. This paper presents an artifi-
cial neural network framework that processes qualitative and quantitative field test data in lieu of ASTM
laboratory test results. This neural network approach rapidly and accurately assigns USCS classifications
to various soils based solely on qualitative and quantitative field soil analysis.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Compressed earth blocks

Compressed earth blocks (CEBs) represent a cost-effective, sus-
tainable, and environmentally-friendly building alternative to tra-
ditional masonry elements. CEB construction comprises low-
cement, compressed local soil brick units that are rapidly and effi-
ciently manufactured on site. CEB construction uses local soil as
the primary component, which provides advantages over tradi-
tional masonry elements including lower cost, increased energy
efficiency, and lower environmental impact [1–13].

One significant challenge with prolific CEB construction is the
lack of standardization in the United States and internationally
[2,6,8,12]. The United States, France, New Zealand, and different

parts of Africa have standards that address soil selection and CEB
construction, however they vary widely in their recommendations.
Some of these standards address the qualities of the soil found
through laboratory or field soil analysis, while others rely on the
strength of the cured block to determine suitability for construc-
tion. Jiménez Delgado and Guerrero [7] provide an excellent review
of international standards, normative documents, and technical
documents that address CEB construction.

The ultimate behavior (e.g. structural resistance, energy effi-
ciency, constructability) of a CEB structure is dependent on proper-
ties of the character of soil, which vary based on location [1,2,4–
8,10–12,14,15]. Soil classification standards such as the Unified
Soil Classification System (USCS) and the American Association of
State Highway and Transportation Officials (AASHTO) require lab-
oratory testing; therefore, standardized assessment of soil charac-
teristics in the field may be difficult. Typically, field tests provide
primarily qualitative data collected by builders of varying experi-
ence; some quantitative data can also be collected [8,10].

Soil properties of interest in CEB construction are particle distri-
bution, clay content, and plasticity. Particle distribution and clay
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content establish the makeup of a soil, but is also important to
understand how a soil behaves; the plasticity of a soil establishes
the behavior when water is introduced. These properties affect
mix acceptability and govern the ability of the soil to form a solid
brick. Laboratory procedures to characterize these soil properties
are detailed in ASTM D422 and ASTM D4318 [16,17]. The Unified
Soil Classification System (USCS) is a widely-used soil classification
system that uses the aforementioned soil properties to assign a soil
a classification. The USCS can be found in ASTM D2487 [18].

1.2. Rapid soil classification

The need for rapid soil classification is not limited to CEB con-
struction. Regardless of the type of earthen construction selected
(e.g. extruded bricks, adobe, rammed earth, and wattle and daub),
it is apparent that understanding the quality of soil at a site is cru-
cial to successful earthen construction [7,8,15]. For this paper and
specifically CEB construction, the USCS classification system is
used.

Obtaining a soil’s classification through USCS requires special-
ized equipment and laboratory space, which are rarely available
in remote locations or developing areas. Current efforts in rapid
soil classification focus on the use of spectroscopy or spectrometry;
these methods require specialized equipment and intensive analy-
sis [19].

An alternative to more expensive and specialized analysis
methods is manual field soil analysis, which includes quick tests
performed with simple tools on site [8,10]. These tests are
designed so that builders can quickly estimate soil properties to
determine soil acceptability for CEB unit construction; these data
have not been used to obtain rigorous, ASTM quality scientific
measurements as tests yield qualitative and quantitative data that
maybe subjective or imprecise. The primary challenge in rapid soil
classification in field conditions is the collection and analysis of
data that can accurately and efficiently determine critical soil
parameters and, subsequently, a classification [19].

This paper presents an artificial neural network framework that
relates the results of qualitative and quantitative field soil analyses
to standardized laboratory soil analyses and, ultimately, USCS clas-
sification. Neural networks are an appropriate alternative to deter-
ministic methods when the input-output relationship is intractable
or difficult to implement [20–22]. Neural networks can also be
trained to be fault-tolerant, robust classifiers that are capable of
utilizing all data, quantitative and qualitative, to make an assess-
ment. In this paper, neural networks fuse qualitative and quantita-
tive field assessment data and establish the relationship between
field data and USCS soil classifications, which has the advantage
of the speed of field soil analysis while still providing useful infor-
mation about the soil.

2. Material and methods

2.1. Neural networks

Artificial neural networks are analytical models designed to
mimic the input/output associations of the human neural struc-
ture. They are powerful pattern recognizers and classifiers and
are particularly suitable for problems that are too complex to be
modeled and solved by classical mathematics and traditional pro-
cedures [23–26]. Neural networks are capable of modeling input-
output functional relations even when mathematically explicit for-
mulas are unavailable; this is achieved by training the networks
(e.g. weight adjustment, statistical optimization) on known
input/output data until the network can appropriately represent
the input/output space [22–24,26]. Bhargavi and Jyothi [27,28]

have applied Naïve Bayes data mining techniques and genetic algo-
rithms to rapidly classify soils based on field data. In this work, the
machine learning techniques operate on a dataset of quantitative
standardized field data obtained from direct tests using specialized
equipment.

The complex, nonlinear relationship between USCS classifica-
tion, Y, and diagnostic field test data streams, X, is difficult to ascer-
tain deterministically, and neural networks are an appropriate
technique for establishing this relationship. Material properties,
data collection techniques, and other uncertainties contribute to
difficulties in developing the relationship. One common and effec-
tive type of neural network used in engineering applications is the
feed-forward backpropagation neural network. These neural net-
works are made up of multiple-input neurons that are theorized
to mimic the function of neurons in the brain. Neurons receive
an input vector and produce an output. In feed-forward neural net-
works, each input in the input vector is multiplied by a unique, ini-
tially random, numerical weight. These weighted inputs are then
summed and a constant bias is added to shift the output of the
neuron so that constant portions of linear relationships may be
captured. This value is then passed through a transfer function,
which is essentially a normalization function and can take many
different forms (e.g. a threshold function, piecewise-linear func-
tion, or sigmoid function) to obtain the output of the neuron
[23,24]. Fig. 1 shows a diagram of a multiple-input neuron, where
x1. . .R are the network inputs in the input vector, wi,1. . .R are the
unique weights applied to each input, b is the constant bias added
to the summation of the weighted inputs, n is the output of the
neuron that is fed into the transfer function f, and a is the final out-
put of the neuron.

Neural networks are organized into layers. The input layer and
output layer contain the input data and the resulting output data.
Hidden layers between the input and output layers contain the
neurons and are connected by the weights; there may be any num-
ber of hidden layers, and it has been shown, theoretically, that a
two-layer network may map any non-linear relationship [29]. Each
layer is a vector containing any number R of neurons, and the out-
put of that layer is a vector of length R containing the output from
each neuron in that layer. This output vector is then passed as the
input vector for the next hidden layer; the process repeats through
all hidden layers until the final output of the network is reached.

The neural networks utilized in this paper are feed-forward
backpropagation neural networks. In the case of feed-forward
backpropagation, the training occurs by the adjustment of the
synaptic weights. The weights are initialized as random numbers.
The first pass of the training dataset are input into the network
and an output is generated. If this output does not match the target

Fig. 1. Multiple-input neuron diagram.
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