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a b s t r a c t 

Predictive analytics has become an important topic in expert and intelligent systems, with broad ap- 

plications across various engineering and business domains, such as the prediction of exchange rate in 

finance, weather and demand for energy using mixture of experts. However, selection of the number of 

experts and assignment of the input to individual experts remain elusive, especially for highly nonlinear 

and nonstationary systems. This paper presents a novel mixture of experts, namely, nonparametric multi- 

scale Gaussian process (MGP) experts to predict the dynamic evolution of such complex systems. Con- 

cretely, intrinsic time-scale decomposition is first used to iteratively decompose the time series generated 

from such complex systems into a series of proper rotation components and a baseline trend component. 

Those components delineate the true time-frequency-energy patterns of the complex systems at differ- 

ent granularity. A Gaussian process (GP) expert is then applied on each component to predict the system 

evolution at each scale. MGP circumvent the tedious selection and assignment problems via the non- 

parametric ITD. Summation of those individual forecasts represents the overall evolution of the original 

time series. Case studies using synthetic and real-world data elucidated that the proposed MGP model 

significantly outperforms conventional autoregressive models, composite GP model, and support vector 

regression in terms of prediction accuracy, and it is particularly effective for multi-step forecasting. 

Published by Elsevier Ltd. 

1. Introduction 

Predictive analytics is increasingly becoming an integral com- 

ponent of the fully functioning expert and intelligent systems with 

applications across various engineering and business domains, such 

as prediction for exchange rate and climate using expert systems 

( Yuksel, Wilson, & Gader, 2012 ). More specifically, as the high cost 

associated with additive manufacturing has suppressed the wide 

applications of the 3D printed products, the AM industries are 

endeavoring to adopt predictive analytics to prevent as opposed 

to mitigate quality loss ( Cheng, Bukkapatnam, Raff, & Komanduri, 

2012 ). The P4 medicine scheme (Predictive, Preventive, Personal- 

ized, and Participatory) has emphasized preventive healthcare in- 

stead of reactive disease control for optimum decision making. In 

addition, predictive analytics has been employed to predict the 

throughput rate of an automotive assembly line ( Bukkapatnam & 

Cheng, 2010 ) for resource allocation. 

Remarkably, during the past decades, the growth of cloud com- 

puting and spiral development of Internet of Things and inexpen- 

sive sensors, as well as the widespread use of smart devices have 

enabled the acquisition of a vast array of data (“big data”) and dra- 
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matically lowered the costs of information storage and retrieval. 

This has boosted the application of analytics, and potentially trans- 

formed expert systems from knowledge-based to data-driven. Par- 

ticularly, the temporally varying data, or time series, have garnered 

enormous attention in the machine learning as well as expert sys- 

tems communities ( Cheng et al., 2015; Lin, Wang, Xie, & Zhong, 

2017 ). Those time series data contain consequential causal and dy- 

namic information about the underlying complex systems or pro- 

cesses, and they enable the expert system to harness fundamental 

patterns for monitoring, prognosis and decision making purposes. 

However, temporally evolving data have posed immerse chal- 

lenges to the pattern recognition and, consequently, the forecast- 

ing and control of complex systems, as those data typically exhibit 

combined nonlinear and nonstationary characteristics. That said, 

patterns or relationship and trend in the historical observations are 

ambiguous or difficult to quantify. Although mixture of experts has 

been studied to handle those complex systems ( Yuksel et al., 2012 ), 

it still remains an elusive task to select the number of experts and 

assign inputs to the individual experts. 

In this paper, we present a novel generative mixture of experts 

model by integrating two nonparametric models, Gaussian process 

(GP) and intrinsic time-scale decomposition (ITD). Although, as a 

nonparametric approach, GP largely reduces modeling efforts, the 

squared exponential covariance function form has confined GP only 
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to stationary cases. ITD ( Frei & Osorio, 2007 ) handles nonstation- 

arity of the original time series by decomposing it into a number 

of proper rotations (see Section 3 for details) at progressively de- 

creasing granularity and a trend baseline. It is nonparametric in 

that no basis functions are required for the decomposition a priori . 

Further, the number of ITD components fully determines the num- 

ber of experts. The GP model (individual expert) built upon each 

component (hence, the name multi-scale GP) captures the covari- 

ance structures across different scales. The focus of this paper is 

on the characterization and forecasting of univariate time series. 

The rest of the paper is organized as follows: Section 2 pro- 

vides a brief review for the classical forecasting models of uni- 

variate time series. Section 3 presents the theoretical foundation 

of multi-scale Gaussian process (MGP). In Section 4 , both synthetic 

and real-world case studies are used to illustrate the effectiveness 

of the proposed MGP model. Final conclusion remarks are given in 

Section 5 . 

2. Research background 

In this section, a brief review of the forecasting models for non- 

linear and nonstationary time series is provided. For detailed de- 

scription and comparison of different types of models, the read- 

ers may refer to our recent work ( Cheng et al., 2015 ) and also 

( Lin et al., 2017 ). 

A myriad of forecasting approaches has been investigated in the 

univariate time series forecasting, including auto-regressive mod- 

els, neural networks, kernel-based methods, etc. In particular, au- 

toregressive moving average (ARMA) and autoregressive integrated 

moving average (ARIMA) are the most frequently used classical 

time series models. ARMA has a simple structure based on the 

dependence of the variables on the lagged history. It specifies the 

current observation as a weighted sum of past realizations and er- 

ror terms. Nonetheless, it only fits stationary or weakly stationary 

processes, and the weight estimate does not converge in the case 

of high nonstationarity. ARIMA is an extension to ARMA, and ad- 

dresses the nonstationary issues by differencing the original time 

series until it is stationary, yet only limited to simple form of non- 

stationarity (e.g., trend). Oftentimes, real-world time series mani- 

fest multiple nonstationary patterns, including seasonality and ran- 

dom spike, such as the electricity load time series shown in Fig. 7 . 

Here, the electricity load time series profile depicts seasonality at 

different scales, in terms of demand similarity between day-to-day, 

week-to-week and year-to-year variations. Multiplicative season- 

ality ARIMA ( Taylor, de Menezes, & McSharry, 2006 ) and double 

seasonal Holt–Winters exponential smoothing ( Taylor, 2003 ) have 

been investigated for such load data. But they failed to represent 

the nonlinear and nonstationary patterns of the load profile be- 

yond seasonality ( Cheng et al., 2015 ). Therefore, the forecasting ac- 

curacy is severely depressed with the above-mentioned models. 

In expert and intelligent system, grey system models were stud- 

ied extensively for time series prediction ( Kayacan, Ulutas, & Kay- 

nak, 2010 ). Those models are based only on a set of the most re- 

cent data depending on the size of a sliding window of the pre- 

dictor. That said, the recent observations are assigned a heavier 

weight to predict the future value. However, the selection of win- 

dow size and weight remains a challenging task. Mixture of ex- 

perts models are also popular for nonstationary time series predic- 

tions ( Yuksel et al., 2012 ). However, the selection of expert num- 

bers and assignment of inputs to individual experts oftentimes in- 

cur tremendous effort s. 

Notably, decomposition-based forecasting models have gar- 

nered enormous attention of late. Those models decompose the 

time series into a number of components at different frequency 

scales, each of which has significantly reduced complexity com- 

pared to the original time series. The widely known Fourier 

Fig. 1. Schematic diagram of EMD algorithm. 

analysis, wavelet analysis, empirical mode decomposition (EMD) 

( Huang et al., 1998 ), and the recently developed intrinsic time- 

scale decomposition (ITD) ( Frei & Osorio, 2007 ) are of this cate- 

gory. Fourier analysis describes time series as a sum of sine/cosine 

basis waves. It is a “global” method and does not capture fre- 

quency variation at different temporal locations. Attempt to ad- 

dress this issue typically involves the Windowed Fourier analysis, 

such as short-time Fourier transform. That is, the long time series 

is divided into short segments of equal length, and Fourier analy- 

sis is then conducted on each segment to represent the local fre- 

quency. However, fixed window size is often used; thus high time 

and frequency resolution cannot be obtained simultaneously. Alter- 

natively, wavelet analysis offers critical time-frequency information 

across multi-scales and reveals “local” patterns via translation and 

dilation of basis functions with compact support. Note that both 

Fourier and wavelet methods require basis functions to be defined 

a priori , which largely determines the effectiveness of these mod- 

els. 

In contrast, EMD ( Huang et al., 2003 ) is nonparametric and does 

not require any basis function, suitable for any kind of nonlin- 

ear and nonstationary patterns. EMD iteratively decomposes the 

original time series into intrinsic mode functions (IMFs) of pro- 

gressively lower frequency and a baseline trend. Here, the base- 

line is defined as the mean of the upper and lower envelopes of 

the wave in a fixed time window, as indicated in Fig. 1 . The upper 

and lower envelopes are the cubic spline fitting of the local max- 

ima and minima (green dots), respectively. It is evident that the 

baseline demonstrated the global trend of the time series. When 

de-trended (i.e., baseline trend component removed), the residual 

time series, also called IMF (the magenta line), contain the high- 

est frequency presented in the wave at the current level. The low- 

frequency baseline is further decomposed into another baseline 

trend and IMF. This process iterates until a baseline trend com- 

ponent without any riding wave is left. Therefrom, the extracted 

trend baseline represents the general behavior of the time series, 

and each IMF is modulated in both amplitude and frequency to 

capture local characteristics. 

For example, a forecasting model combining EMD and neu- 

ral network (NN) has been adopted to predict the exchange rate 

( Das, Bisoi, & Dash, 2017 ) with pronounced accuracy compared to 

NN models. The power of EMD resides in the IMFs with the well- 

defined instantaneous phase, amplitude and frequency, or time- 

frequency-energy patterns according to the Hilbert-Huang trans- 

form ( Frei & Osorio, 2007 ). In other words, the well-behaved IMFs 

are proper rotations that are strictly positive at local maxima and 

strictly negative at local minima. However, IMFs generated from 

EMD often do not have the integral properties of proper rotations. 

Later, a sifting process ( Huang et al., 1998 ) was developed to se- 

lect the best baseline among a pool of candidates and generate 

the true proper rotation at each decomposition level. Nonetheless, 

by smoothing out the uneven waves, this procedure often blurs 

the paramount transient and nonstationary features. To this end, 
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