Modeling of all porous solid oxide fuel cells

Haoran Xu, Bin Chen, Peng Tan, Weizi Cai, Wei He, David Farrusseng,⁎, Meng Ni⁎

⁎ Corresponding authors at: Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
E-mail address: david.farrusseng@ireelyon.univ-lyon1.fr (D. Farrusseng).

ABSTRACT

The all porous solid oxide fuel cell concept is proposed to solve the carbon deposition problem of solid oxide fuel cells. The transport of oxygen molecules from the cathode to the fuel side through the porous electrolyte can resist carbon deposition but could reduce the fuel cell performance. In this paper, a two-dimensional model for all porous solid oxide button cells is developed for the first time. After model validation with experimental data, the model is then extended for a tubular cell for parametric simulations. The effects of operating conditions and the electrolyte microstructure properties on carbon resistance and electrochemical performance of all porous solid oxide fuel cells are examined. The good carbon resistance of all porous solid oxide fuel cell is numerically demonstrated. It is found that the electrochemical performance and anode surface O/C ratio is significantly affected by anode inlet gas composition and flowrate. In addition, the anode supported all porous solid oxide fuel cell shows a great potential in terms of both power generation and coking resistance. The results of this study form a solid foundation to understand the mechanism and promising future of all porous solid oxide fuel cells.

ARTICLE INFO

Keywords:
All porous solid oxide fuel cell
Methane coking
Carbon deposition
Mathematical modeling

HIGHLIGHTS

- A model for an all-porous solid oxide fuel cell is developed for the first time.
- Good carbon resistance of the all porous fuel cell can be achieved.
- High performance of the all porous fuel cell can be achieved with CH₄ fuel.
- Co-generation of electricity and syngas in all porous fuel cell is proposed.

1. Introduction

A solid oxide fuel cell (SOFC) is one of the most attractive technology for converting the chemical energy fuels to electricity through electrochemical reactions [1–4]. Compared with other electric generators, SOFCs work in a clean, quiet and high efficiency manner. Compared with low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) requiring very pure hydrogen fuel, SOFCs are fuel flexible and can use CO containing feeds for power generation. The utilization of carbon contained fuel in SOFCs has received more and more interest recently, including the direct utilization of solid carbon [5,6]. Methane is an interesting alternative fuel choice for SOFCs as it is a main component in biogas and natural gas. Compared with H₂, methane has a higher volumetric energy density with lower price. Using methane as fuel can hopefully accelerate the commercialization of SOFCs for a variety of applications [7–11]. However, the direct fueling of methane causes severe coking and carbon deposition on SOFC anode (typically with nickel catalyst), resulting in catalyst deactivation [12]. Apart from designing novel anode materials [13,14], strategies like adding external reformers and introducing steam together with methane have been proposed to enable nickel based anodes for the use of methane while resisting carbon deposition [15–17]. Nevertheless, these strategies require extra auxiliary facilities and raise the total expense.

Recently, Guo et al. [18] proposed a novel concept of all porous solid oxide fuel cell (AP-SOFC). By using a porous electrolyte, part of O₂ from the cathode side can be transported to the fuel side to inhibit carbon deposition from methane fuel. In their preliminary experimental
Nomenclature

Abbreviation

AP-SOFC all porous solid oxide fuel cell
BSCF barium strontium cobalt ferrite ($\text{Ba}_0.5\text{Sr}_0.5\text{Co}_0.8\text{Fe}_0.2\text{O}_3$)
CGO gadolinium-doped ceria ($\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_1.9$)
CMO carbon monoxide oxidation
HO hydrogen oxidation
MO methane oxidation
MSR methane steam reforming
O/C oxygen to carbon
SCCM standard cubic centime per minute
SOFC solid oxide fuel cell
TPB triple phase boundary
WGS water gas shift

Roman

B_0 permeability coefficient, m^2
c_{CO_2} mole concentration of carbon dioxide, $\text{mol} \cdot \text{m}^{-3}$
$c_{\text{H}_2\text{O}}$ mole concentration of water, $\text{mol} \cdot \text{m}^{-3}$
D_i^{eff} effective diffusivity of species i, $\text{m}^2 \cdot \text{s}^{-1}$
D_i^{Kn} knudsen diffusion coefficient of i, $\text{m}^2 \cdot \text{s}^{-1}$
D_i^{mol} molecular diffusion coefficient of i, $\text{m}^2 \cdot \text{s}^{-1}$
E_{act} activation energy, $\text{J} \cdot \text{mol}^{-1}$
E_{CO} equilibrium potential for carbon monoxide oxidation, V
E_{CO_2} standard equilibrium potential for carbon monoxide oxidation, V
E_{H_2} equilibrium potential for hydrogen oxidation, V
$E_{\text{H}_2\text{O}}$ standard equilibrium potential for hydrogen oxidation, V
F Faraday constant, 96,485 $\text{C} \cdot \text{mol}^{-1}$
i operating current density, $\text{A} \cdot \text{m}^{-2}$
i_o exchange current density, $\text{A} \cdot \text{m}^{-2}$
n number of electrons transferred per electrochemical reaction
N_i flux of mass transport, $\text{kg} \cdot \text{m}^{-3} \cdot \text{s}^{-1}$
p (partial) Pressure, Pa
p_{CO}^L local CO partial pressures, Pa
p_{CO_2} local CO$_2$ partial pressures, Pa
p_{H_2} local H$_2$ partial pressures, Pa
$p_{\text{H}_2\text{O}}$ local H$_2$O partial pressures, Pa
p_{O_2} local O$_2$ partial pressures, Pa
R gas constant, 8.314 $\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
R_{CMO} carbon monoxide oxidation reaction
R_{HO} hydrogen oxidation reaction
R_{MSR} methane steam reforming reaction
R_{MO} methane oxidation reaction
R_{WGS} water gas shift reaction
T temperature, K
u velocity field, $\text{m}^3 \cdot \text{s}^{-1}$
V volume fraction
y_i mole fraction of component i
z gas diffusion direction

Greek letters

α charge transfer coefficient
ϵ porosity
η_{act} activation overpotential loss, V
η_{ohmic} ohmic overpotential loss, V
κ permeability, m^2
μ dynamic viscosity of fluid, $\text{Pa} \cdot \text{s}$
ρ fluid density, $\text{kg} \cdot \text{m}^{-3}$
σ conductivity, $\text{S} \cdot \text{m}^{-1}$
γ pre-exponential factor, $\text{A} \cdot \text{m}^{-2}$
τ tortuosity

Fig. 1. Schematic of a tubular all porous solid oxide fuel cell (AP-SOFC).
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات