
Control Engineering Practice 73 (2018) 171–185

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Increasing system test coverage in production automation systems
Sebastian Ulewicz *, Birgit Vogel-Heuser
Technical University Munich, Institute of Automation and Information Systems, Boltzmannstr. 15, 85748 Garching near Munich, Germany

a r t i c l e i n f o

Keywords:
Automated production system
System testing
Programmable logic controller
Test coverage assessment
Code instrumentation

a b s t r a c t

An approach is introduced, which supports a testing technician in the identification of possibly untested behavior
of control software of fully integrated automated production systems (aPS). Based on an approach for guided
semi-automatic system testing, execution traces are recorded during testing, allowing for a subsequent coverage
assessment. As the behavior of an aPS is highly dependent on the software, omitted system behavior can be
identified and assessed for criticality. Through close cooperation with industry, this approach represents the
first coverage assessment approach for system testing in production automation to be applied on real industrial
objects and evaluated by industrial experts.

1. Introduction

Automated production systems (aPS) in factory automation have
high requirements regarding availability and reliability (Vogel-Heuser,
Fay, Schaefer, & Tichy, 2015), as these systems typically run over long
periods of time (decades) and system failures or incorrect behavior can
increase costs. The volume and complexity of aPS’s software has risen
substantially over the last decade (Vyatkin, 2013), exacerbating the
problem of ensuring reasonable system quality. This quality is typically
investigated and assured by testing. Apart from unit tests performed
on single software modules in an early design phase, system tests of
the integrated functionality of software and hardware are defined and
performed in late phases of development, often as late as during on-site
plant commissioning.

From the authors’ experience, test plans for system testing exist in
most companies in the field of automated production systems engi-
neering, yet the definition of the individual test cases is abstract and
generic. On the one hand, large parts of these test plans can be reused
between projects, on the other hand, the individual test cases leave a
lot of room for interpretation during the testing process. Additionally,
tests are performed manually, as many functions are not related to
the software alone but also to the integrated system comprised of
mechanical and electrical hardware as well as software. Thus, many
actions performed during these tests, such as placing intermediate
products into the machine and visually verifying the correct product
quality, cannot be performed fully automatically: Sensors and actuators
that would enable automated testing are not available due to their cost.
Instead, the test operator is required to perform these actions manually.
This testing process is often performed under high time pressure in an

* Corresponding author.
E-mail address: sebastian.ulewicz@tum.de (S. Ulewicz).

uncomfortable on-site environment and based on the mentioned vaguely
specified requirements on the system. This results in uncertainty of the
adequacy of the performed tests: The adequacy of the performed tests
to ensure the abstractly defined required functionality is often based
on the experience and intuition of the test operator. Subsequently, the
possibility of not testing critical behavior and thus overlooking critical
faults in the system represents a realistic problem.

Code coverage is a possibility to assess test adequacy (Zhu, Hall,
& May, 1997). As the behavior of the integrated automated system is
largely dependent on the software, a coverage assessment of imple-
mented behavior can be performed: by identifying uncovered (untested)
code, unintended omissions of testing system behavior can be revealed.
Based on this finding, an approach was developed consisting of an
instrumentation of the control software to allow for recording of exe-
cution traces and an analysis of these traces for coverage assessment
and identification of untested code. The approach was implemented in
a prototypical tool and evaluated using a real industrial case study and
a subsequent expert evaluation yielding promising results.

The main contribution of the presented approach is the ability to
identify untested behavior during system testing of fully-integrated
industrial production automation systems controlling discrete processes
without the need for formalized requirements or simulations. Thus, for
the first time, the approach provides valuable support in quantitatively
assessing and increasing testing quality in fully-integrated industrial aPS
in industrial quality assurance scenarios.

The structure of the paper is as follows: In Section 2, an overview of
requirements gathered from industrial experts is presented in order to
rate existing approaches and to guide the development of the presented

https://doi.org/10.1016/j.conengprac.2018.01.010
Received 19 March 2017; Received in revised form 11 November 2017; Accepted 22 January 2018
0967-0661/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.conengprac.2018.01.010
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2018.01.010&domain=pdf
mailto:sebastian.ulewicz@tum.de
https://doi.org/10.1016/j.conengprac.2018.01.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Ulewicz, B. Vogel-Heuser Control Engineering Practice 73 (2018) 171–185

approach. Section 3 presents related work in the field of production
automation and adjacent domains. These works are analyzed and a
research gap is identified. In the concept section (Section 4), the
approach is described in detail regarding the choice of the coverage
metric, the code instrumentation and coverage assessment. Information
about the implementation of the approach is detailed in Section 5
followed by an application on a case study and an expert evaluation
in Section 6 which allows for a qualitative impression of the concept’s
performance and applicability. In Sections 7 and 8, a conclusion and an
outlook on future work are discussed.

2. Industrial requirements regarding system testing in production
automation

The aim of the approach presented in this work is to be closely
aligned with industrial requirements in the field of production automa-
tion engineering. For this reason, multiple workshops with up to seven
highly experienced experts from three internationally renowned compa-
nies active in this field were conducted to infer these requirements. Six
main requirements regarding applicability of a possible approach were
identified:

Requirement 1 (R1): support of industrial software properties

Programming standards relevant for the industry, i.e. the program-
ming standard IEC 61131-3 for Programmable Logic Controllers (PLC)
dominant in the engineering of automated production machines, has to
be supported. Of the five defined programming languages, Structured
Text (ST) and Sequential Function Chart (SFC) in particular need to be
supported as these are the most commonly used programming languages
within the companies questioned.

Requirement 2 (R2): real time capability and memory size

The approach should not influence the real time properties of
the tested system in a way that would not permit needed real time
capabilities of the system to hold. The needed real time capabilities are
seen as unaffected if a possible increase in execution time of modified
code does not lead to the PLC scan cycle time to be exceeded. In addition,
possibly increased size of compiled control code software should not
lead to exceeded memory on the execution hardware (PLC).

Requirement 3 (R3): inclusion of hardware and process behavior

Testing a system integrates all parts of the system, meaning software,
hardware and the controlled process. To be able to assess a system’s
conformance to its specification, all parts should be as similar to the
final system as possible, i.e. the software running on the final execution
hardware, controlling the final version or the hardware setup and
technical process. For this reason, using a simulation rather than the
real hardware is often not sufficient for final system tests, as the validity
of the described behavior is a simplification of real hardware behavior.
In addition, simulations are costly to produce – in particular for aPS
produced in small lot sizes – and automatic generation of simulations
with available documents as proposed by Barth and Fay (2013) and
Puntel-Schmidt et al. (2014) are not available in many cases and for
the participating industry partners in particular. This problem especially
applies to medium and smaller sized companies, where an approach
which is independent of simulations is required, as these are often
no option for system testing in production automation for economic
reasons.

Requirement 4 (R4): manipulation of hardware and process behavior

The approach needs to be applicable on real industrial testing use
cases, as defined by the currently performed system test cases in the
company. System tests, as described in this approach, are defined as
black box tests (test derived from a specification rather than the code
itself) of a fully integrated system comprised of software, controlled
hardware and the technical process. The tests include manual manip-
ulations of the hardware or technical process that cannot be performed
by the software. As an example, manually opening and closing doors or
putting intermediate products in the machine can be typical operations
during system testing.

Requirement 5 (R5): no need for formalized functional requirements

The problems stated in the introduction could be mitigated us-
ing more detailed and formalized functional requirements. Using a
connection between requirements, test cases and models of different
engineering views of the system could enable validation of the involved
models (Estevez & Marcos, 2012) and more detailed relation between
requirements and a system’s software code itself could be created using
static feature location techniques (Dit, Revelle, Gethers, & Poshyvanyk,
2013). Yet in practice, this would require adequate software tools,
substantial effort regarding training and additional resources for spec-
ification for each new engineering project. As this tradeoff between an
initial investment and its outcome is highly speculative, according to
the participating industrial experts, the approach must be independent
from formalized functional requirements.

Requirement 6 (R6): support the assessment of test adequacy (finding
untested behavior)

Here, the approach is to increase efficiency and quality during
the quality assurance process of special purpose machinery by sup-
porting the tester, who might be experienced software engineers or
inexperienced technicians, when assessing the test adequacy. A generic
coverage assessment, i.e. ‘‘100% of behavior has been tested’’, is seen
as questionable because a resource for completely testing a system is
not feasible and specific numbers may have little meaning. Therefore,
rather than assessing how complete the system behavior was tested, the
requirement was set to finding untested behavior and assessing its need
for specifying tests.

3. Related work in the field of test coverage assessment

Coverage metrics in the field of computer science have been an
active research topic for many years. They can be used for test case
generation (Anand et al., 2013), change impact analysis (Bohner &
Arnold, 1996; De Lucia, Fasano, & Oliveto, 2008), regression test
selection and prioritization (Engström & Runeson, 2010; Yoo & Harman,
2012) or for assessing test suite adequacy (M. C. K. Yang & Chao,
1995; Zhu et al., 1997). While some approaches have already been
incorporated into the production automation domain, coverage metrics
have rarely been used for assessing test suite adequacy in this field. In
the following, a closer look into work related to the presented approach
will be taken.

3.1. Requirement based test coverage

These coverage metrics are based on the relation of requirements
and test cases in which test cases check whether the system under test
fulfills a set of requirements. In reverse, if an approach uses functional
requirements or specifications for test generation, it is assumed that the
generated test case is adequate for these requirements.

A basic realization of this approach is commercially available in
multiple requirements management tools, such as IBM Rational DOORS

172



https://isiarticles.com/article/138879

