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a b s t r a c t

The performance of a solid oxide fuel cell (SOFC) is subject to inherent uncertainty in operational and
geometrical parameters, which can cause performance variability and affect system reliability. Operating
conditions such as current demand, cell temperature and fuel utilization play an important role on the
degradation mechanisms, which affect typical SOFCs. In previous work, a deterministic empirical
degradation model of a SOFC was developed as a function of such operating conditions. By the nature of
experimental data and regression fitting, this model was not deterministic. The aim of this work is to
evaluate the impact of the uncertainties in the degradation model through a stochastic analysis. In
particular, the Response Sensitivity Analysis (RSA), an approximate stochastic method based on Taylor
series expansion, is applied to a standalone SOFC model and a fuel cell hybrid system model both
subjected to cell degradation. The attention is principally focused on the impact on the fuel cell lifetime.
To provide an indication of degradation effect and resulting lifetime uncertainty on economic perfor-
mance, a cursory economic analysis is performed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy systems are largely affected by aleatory and epistemic
uncertainties, due to tolerances in materials, variable operating
conditions, environmental uncertainty, or inaccurate estimation of
parameters [1e3]. Different fields of engineering use different ways
to describe this uncertainty and adopt a variety of techniques to
devise designs that are at least partly insensitive or robust to un-
certainty. For this reasons, design under uncertainty of energy
systems has been of interest for decades [4,5]. Recently, the
increasing deployment of renewable energy plants has required a
special attention on the uncertainty of renewable sources and its
impact on the economic performance [6].

In engineering field, models are typically treated deterministi-
cally, even though input values can have significant uncertainties
that inevitably propagate through the system to the outputs; this
deficiency can be overcome by treating the inputs and conse-
quently the outputs probabilistically. The uncertainties associated
with model input parameters can affect both short- and long-term
performance and consequently cost. In order to reduce the error

associated with the uncertainty of the input variables, methods for
system design under uncertainty become essential.

The research available in the open literature related to un-
certainties in energy systems is mainly focused on steady-state
models [7e9]. Probabilistic methods are mostly applied for opti-
mization purposes and design performance evaluation [2,8,10] and
very few cases are related to dynamic energy system analyses.
Model uncertainties, materials variability, and uncertainty in
operating parameters were considered in SOFC systems and the
effects on the performance were evaluated [7e9,11,12]. Response
sensitivity analysis (RSA) was applied to a proton exchange mem-
brane (PEM) fuel cell in order to count for the uncertainty in load
profile and costs, evaluate the impact on fuel cell performance, and
optimize the design and the operating strategy [2,13]. Model un-
certainties were taken into account in a multi-objective optimiza-
tion approach for a SOFC based system [10].

In analyzing fuel cell long-term performance, it is important to
consider that useful operative life is currently limited by different
degradation mechanisms. As such, particularly in high temperature
fuel cells such as SOFCs, performance degrades over time due to
various mechanisms that reduce the cell active area and conse-
quently the generated power [14,15]. These mechanisms are
influenced by operating conditions, such as current density and* Corresponding author.
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temperature [16,17]. The effect of fluctuations and inherited vari-
ability of these parameters was analyzed in open literature for SOFC
and PEM [9,11,12]. Many deterministic models of degradation in
SOFCs can be found in the open literature, for example on the in-
fluence of operating parameters on fuel cell long-term degradation
[18,19]. The effects of uncertainties on performance degradation of
a fuel cell were analyzed by different authors [20,21]. Monte Carlo
approach was used by Thomas et al. to predict the life of a lithium-
ion cell with a degradation model [20], while Placca et al. studied
the effect of temperature uncertainty on cell voltage and degra-
dation rate in a PEM through ANOVA [21]. At the best of the au-
thors' knowledge, probabilistic degradation models for SOFCs are
not present in the literature.

In a previous work, Zaccaria et al. developed an empirical
degradation model for a SOFC as a function of three operating pa-
rameters [22]. By nature of experimental data, this model was
characterized by uncertainties in the coefficients, although only
deterministic analyses have been conducted so far. With the
deterministic model, it was demonstrated that SOFC lifetime can be
extended if cell voltage is maintained constant allowing power and
fuel utilization to degrade over time [23]. However, economic
benefits of this operating strategy cannot be fully assessed if results

uncertainty and confidence interval are not presented. In addition,
the real-time capability of the model makes it a powerful tool for
control development to mitigate degradation effects; in this
perspective, uncertainty analysis can be valuable for robust con-
trollers design [24].

In general, probability theory is very effective when sufficient
data is available to quantify uncertainty using probability distri-
butions. However, when sufficient data is not available or there is
lack of information on the process model, the classical probabilistic
methodology may not be appropriate. Traditional probabilistic
approaches include Monte Carlo Simulation (MCS), Latin Hyper-
cube Simulation (LHS), and Analysis of Variance (ANOVA), which
are sampling methods and typically require a large number of
samples to obtain the probabilistic information (i.e. mean, varia-
tion, skewness, and probability distribution function). However,
when a large number of degrees of freedom are used to determine
the performance of the system, the MCS is so computationally
intensive that, combined with complex and expensive systems, it
makes the problem computationally intractable. This computa-
tional difficulty can be overcome by using approximate methods
like fast probability integration (FPI), response sensitivity analysis
(RSA), or polynomial chaos (PC) methods [2,25e29]. Such methods

Nomenclature

ANOVA ANalysis Of VAriance
CFN Annual cash flow [$]
COV Coefficient of variance [%]
EOL End of life [yr]
FC Fuel cell
FPI Fast probability integration
FU Fuel utilization
HS Hybrid system
IRR Internal rate of return [%]
LHS Latin Hypercube Sample
LSM Lanthanum strontium Manganite
MCS Monte Carlo simulation
NBCR Net benefit to cost ratio [%]
NETL National Energy Technology Laboratory
NPV Net present value [$]
PBP Pay-back period [yr]
PC Polynomial Chaos
PDF Probability density function
PEM Proton exchange membrane
RSA Response sensitivity analysis
SOFC Solid oxide fuel cell
TCI Total capital investment
TPB Triple phase boundary
YSZ Yttria-stabilized zirconia
A Area [m2]
Cel Electricity price [$ kWh�1]
Cf Fuel cost [$ kg�1]
Cmain Maintenance cost [$]
cp specific heat [J kg�1 K�1]
d step size
F Faraday's constant [C mol�1]
G Gibbs free energy [kJ]
gMj(Z) functional relationship between j-th output parameter

and the inputs Z
h specific enthalpy variation from 298 K condition [kJ

kg�1]

Convection coefficient [W m�2 K�1]
i current density [A cm�2]
i0 exchange current density [A cm�2]
Kp Equilibrium constant
k Conduction coefficient [W m�1 K�1]
L cell length [m]
Mj j-th parameter of output for the system
_m Mass flow rate [kg s�1]
n number of transferred electrons
Pel Electricity production [kWh]
Pf Fuel consumption [kg]
PGT Gas turbine power [kW]
p pressure [bar]
_Q Fuel cell thermal output [kW]
qgen Generated heat [W m�1]
R Area specific resistance [U m2]
Rg Ideal gas constant [J mol�1 K�1]
rd Degradation rate [% kh�1]
T Temperature [K]
t time [s]
V Voltage, overpotential [V]
x mole fraction
Zi i-th parameter of input for the system
a charge transfer coefficient
h efficiency
m mean
n variance
r density [kg m�3]
s standard deviation

Subscripts
act activation
an anode
ca cathode
dif diffusion
ohm ohmic
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