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a b s t r a c t 

There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are 
capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization 
of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is 
demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along 
with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are 
discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation 
function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recent advances in additive manufacturing (AM) have enabled 
shorter product development times by accelerating fabrication of pro- 
totypes featuring complex geometries [1,2] . This facilitates production 
of desired shapes at rates that are unmatched by conventional scalable 
fabrication routes. Further, AM has been envisioned as an approach 
to reverse engineering involving rebuild and repair of complex broken 
machine components in small volumes [3] . This methodology towards 
equipment repair is highly useful in isolated environments where ac- 
cess to conventional machine tools and other fabrication equipment is 
not available [4] . Towards this, stand alone 3D-printers based on poly- 
mer [5–7] , metallic [8–10] and ceramic material systems [11–13] have 
been developed. 

A crucial aspect in the reverse engineering of complex shapes for 
repair is the characterization, i.e. 3D-reconstruction of component ge- 
ometries. Traditional approaches towards the same have utilized contact 
( e.g. coordinate measuring machine) and non-contact ( e.g. optical laser 
scanning and computed tomography) approaches. These approaches in- 
volve the detection of edges by electro-mechanical or photo-electronic 
methods. In this regard, these 3D-reconstruction techniques rely on ex- 
pensive and often unwieldly pieces of equipment akin to conventional 
machine tools, wherein the utility of AM processes for 3D-printing based 
repair is subdued. 

Attempts towards mitigation of these shortcomings have looked at 
structure from motion (SfM) based optical photogrammetric range imag- 
ing for 3D-reconstruction [14] . This technique involves imaging of the 
object of interest from multiple overlapping angles followed by detec- 
tion of common features across these images. Subsequently, the move- 
ment of these features across images is correlated with the correspond- 
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ing motion of the camera, wherein the features are eventually mapped 
onto a 3D space representative of the shape of the original object. In 
this regard, a concomitant and accurate characterization of the cam- 
era motion is crucial for successful implementation of SfM algorithms. 
However, this characterization is complicated by noise and drift in the 
inertial measurement units and camera motion sensors, thus resulting in 
form and dimension errors in the reconstructed shape. The characteri- 
zation of camera motion is therefore often performed via image process- 
ing by tracking strategically placed or a-priori identified high contrast 
features on the object of interest [14,15] . Alternatively, imaging for 3D 

reconstruction has also been performed at fixed points in space, wherein 
the camera poses were controllably varied resulting in its motion across 
images being delineated a-priori [16] . 

The accuracy of the aforementioned reconstruction methodologies 
monotonically depends on the number of input images [17] . Provid- 
ing several hundred images as input can result in dense point clouds 
upon reconstruction, wherein high fidelity can be achieved in reverse 
engineering of complex geometries. This is because the density of point 
clouds directly governs the voxel resolution at which the reconstructed 
shape can be fabricated additively. Unfortunately, manual acquisition of 
several hundred images of the same object is a challenging task. Towards 
this, fixing hundreds of points in space for imaging to achieve a-priori 
delineation of camera motion can naturally result in measurement er- 
rors. This challenge can be further exacerbated during reconstruction of 
small objects while acquiring high-resolution, i.e. closeup images that 
contain non-redundant information. 

Alternative routes towards reconstruction of topographies have 
looked at structured light profilometry [18] . This technique relies on 
projection of fringes, i.e. spatially varying dark/bright/colored light 
strips onto 3D shapes [19] . Upon incidence on the surface, these fringes 
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Fig. 1. 3D-Reconstruction by rigid body rotational transformation of object. (a) Non-speherical shape featuring gradient in radii with respect to axis of rotation. A larger radius r b results 
in larger velocity 𝑉 = 𝑟 𝑏 𝜔 and larger displacement Δ𝑠 𝑏 = 𝑟 𝑏 Δ𝜃 for the same angular velocity 𝜔 and angle of rotation Δ𝜃, respectively, as shown in (b), compared to a smaller radius r c (c). 

get distorted, characteristics of which are governed locally by their pro- 
jection angle, curvature of the surface and phase associated with the 
fringe pattern [20] . This distortion can be analyzed to reproduce the 
real 3D shape of the specimen of interest. Structured light profilom- 
etry also known as fringe projection profilometry is traditionally per- 
formed using a kinect camera along with software based processing in 
photographic [21] and video-modes [22] . Recently proposed variants 
of this approach have attempted to characterize large enclosed regions 
of cylindrical spaces [23] . Further, the approach has found utility in 
high-fidelity characterization of micro-meter sized features [24] . 

In the present research, we propose a novel route to shape charac- 
terization using smart-phone based 3D-reconstruction. This route uti- 
lizes rigid body rotational transformation of the component shape of 
interest, wherein original points on the surface of the shape are mapped 
onto a 3D space. While sharing similarities with the original family of 
SfM algorithms, our approach involves imposition of rigid-body rota- 
tional motion to the component using a stage fabricated in-house us- 
ing in-expensive off-the-shelf components. This stage is light/portable 
and the methodology relies on smart-phone imaging. In this regard, this 
methodology can be used to perform high-fidelity 3D-characterization 
when access to high-accuracy instrumentation is restricted. Details of 
this stage are described in the forthcoming sections. It is envisioned 
that this methodology will augment reverse engineering capabilities of 
AM platforms by providing accurate 3D-reconstruction using inexpen- 
sive open source components. 

2. Principals of 3D-reconstruction using a smart-phone and 

digital image correlation 

2.1. Measuring principals 

The concept underlying our proposed methodology for 3D recon- 
struction is illustrated in Fig. 1 . Fig. 1 a shows an arbitrary non-spherical 
shape that is rotated about an axis, wherein the color illustrates the nor- 
malized radius of points on the surface. During rotation at angular speed 
𝜔 , points further away from this axis feature a larger surface speed as 
governed by: 

||𝑉 || = ||𝑟 × �⃗� || (1) 

Consequently, these points exhibit a larger displacement for angular dis- 
placement Δ𝜃 as prescribed by: 

Δ𝑠 = 𝑟 Δ𝜃 (2) 

This feature is evident upon comparison of points b and c in Fig. 1 , these 
exhibiting larger, i.e. r b , and smaller i.e. r c , radii with respect to the axis 
of rotation, respectively. Upon rotation through an angle Δ𝜃, the point 
b moves a larger distance Δ𝑠 𝑏 = 𝑟 𝑏 Δ𝜃, in comparison with the corre- 
sponding distance Δ𝑠 𝑐 = 𝑟 𝑐 Δ𝜃. In this regard, the crux of the proposed 
approach to 3D-reconstruction lies in the delineation of the aforemen- 
tioned displacement Δs from the sequence of digital images of the rigid 
body rotation process. An approach towards this characterization is de- 
scribed in Section 2.2 . 

2.2. Digital image correlation algorithm 

Characterization of displacement of points on the surface of arbitrary 
objects undergoing rigid body rotation was performed using digital im- 
age correlation (DIC). This involves recording the rotation process in a 
sequence of digital images. Subsequently, motion of asperities or high- 
contrast features on the surface of the rotating object is delineated using 
image correlation algorithms [25,26] . This motion is then normalized 
with respect to the angular rotation speed in order to characterize the 
radius of the corresponding point with respect to the axis of rotation 
as prescribed in the Section 2.1 . Fig. 2 illustrates the characterization of 
displacement fields using DIC. Herein, Fig. 2 a represents an arbitrary as- 
perity field containing high contrast features, whereas Fig. 2 b shows the 
same field artificially displaced to the right by (Δ𝑢 0 , Δ𝑣 0 ) = (15 , 0) pix- 
els. In order to characterize this displacement, a template demarcated 
within the dashed square in Fig. 2 a is selected. Subsequently, the corre- 
lation coefficient field associated with this template and the final image 
is characterized as [27,28] : 

𝛾( 𝑥, 𝑦 ) = 

Σ𝑢,𝑣 

[
𝑓 ( 𝑥 + 𝑢, 𝑦 + 𝑣 ) − 𝑓 𝑥,𝑦 

][
𝑡 ( 𝑢, 𝑣 ) − ̄𝑡 

]
(
Σ𝑢,𝑣 

[
𝑓 ( 𝑥 + 𝑢, 𝑦 + 𝑣 ) − 𝑓 𝑥,𝑦 

]2 Σ𝑢,𝑣 

[
𝑡 ( 𝑢, 𝑣 ) − ̄𝑡 

]2 )0 . 5 (3) 

Here, x and y refer to the displacement of Fig. 2 b with respect to Fig. 2 a. 

Further, 𝑡 = 

Σ
𝑇 𝑥 ,𝑇 𝑦 

𝑢 =0 ,𝑣 =0 𝑡 ( 𝑢,𝑣 ) 

𝑇 𝑥 𝑇 𝑦 
is the mean intensity of the template demar- 

cated in Fig. 2 a, where T x and T y refer to dimensions of this template 
along the horizontal, i.e. x and vertical, i.e. y directions, respectively. 

Finally, 𝑓 𝑥,𝑦 = 

Σ
𝑇 𝑥 ,𝑇 𝑦 

𝑢 =0 ,𝑣 =0 𝑓 ( 𝑥 + 𝑢,𝑦 + 𝑣 ) 

𝑇 𝑥 𝑇 𝑦 
is the mean intensity of the offset im- 

age, i.e. Fig. 2 b, calculated at location ( x, y ) over a zone featuring the 
same dimensions as the template, i.e. T x , Y y . The denominator in the 
aforementioned formula for cross correlation 𝛾( x, y ) refers to the corre- 
sponding standard deviations. The normalization of 𝛾( x, y ) with respect 

127 



https://isiarticles.com/article/139177

