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a b s t r a c t

In this work, the framework of isogeometric shell analysis is applied to the simulation of the dynamic
behaviour of thin components measured by a 3D laser scanner. To this end, a B-spline surface is recon-
structed to describe the mid-surface of the components and is used for the analysis. The exact thickness
distribution is also described through the B-spline basis functions and is considered in the numerical
integration. Two components manufactured through deep drawing are studied and the surface fitting
procedure is adapted to their particular geometry. The results are finally validated through experimental
testing of these components.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric analysis (IGA) is a numerical modelling methodol-
ogy that has been recently introduced to bridge the gap between
computer aided design (CAD) and numerical analysis [1,2]. As the
word isogeometric suggests, the same basis functions that describe
the geometry of a component are used directly for the analysis,
avoiding the meshing procedure that is needed in the classical
finite element approach.

In the original version of IGA these functions are non-uniform
rational B-splines (NURBS) [3], although more recently other
methodologies have also been considered in order to improve the
geometric flexibility of IGA, including T-splines [4–6], locally
refined B-splines [7], hierarchical [8] and truncated hierarchical
[9] B-splines, subdivision schemes [10,11] and other spline
methodologies based on unstructured meshes [12–14], to name
some of the most relevant contributions.

Besides avoiding the meshing procedure, IGA allows one to
easily increase the order of the basis functions and, therefore, it
is particularly well suited for problems governed by high-order
partial differential equations [15–19]. In particular, in the field of
structural mechanics, isogeometric shell formulations have been
recently developed following both the Reissner-Mindlin [20] and
the Kirchhoff-Love theory [21]. Since then, other formulations
and applications emerged, see e.g. [22–27].

The Reissner-Mindlin formulation is normally employed for the
description of thick shells where, as a rule of thumb, the ratio
between the curvature radius of the surface R and the thickness t
is smaller than 20 and transverse shear deformations need to be
taken into account. On the other hand, for thin shells (R=t P 20),
the Kirchhoff-Love formulation can be used, which assumes that
transverse shear deformations are negligible.

In practice, although many shell structures could be regarded as
thin shells, Reissner-Mindlin models are a lot more common in the
FE community. In fact, these models assume also rotations as
degrees of freedom (DOFs) and can be implemented using the clas-
sical FE C0 inter-element continuity. This is not the case for
Kirchhoff-Love models because they do not consider rotational
DOFs and, therefore, need C1 inter-element continuity. This conti-
nuity is not easily obtained when employing conventional Lagran-
gian shape functions, but needs more complex and expensive
implementations, see for instance [28].

Kirchhoff-Love shell formulations became more popular with
the introduction of IGA, because NURBS functions are in general
much smoother and allow by construction a higher inter-element
continuity. On removing rotational DOFs, the size of the resulting
system matrix is significantly reduced and its units are consistent,
which improves the condition of the mass and stiffness matrices. In
addition, the shear locking issues typically encountered in (low-
order) Reissner-Mindlin elements [29] are also avoided. For these
reasons, the Kirchhoff-Love formulation is considered in this work
while the interested reader is referred to [30] for a more detailed
overview on both formulations. Another important advantage
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coming from IGA with respect to the classical FE approach, is that
the geometrically exact character of IGA can be of crucial advan-
tage for shell models, which can be very sensitive to small imper-
fections [31]. However, for NURBS based IGA, the aforementioned
considerations on the C1 continuity are valid for single patch
geometries, while for complex models constituted by non-
conforming multi-patch configurations, the C1 continuity needs
to be enforced at their interface [32,18,30,33].

As an application of IGA shell analysis, this work focuses on the
reverse engineering of thin components manufactured through a
deep drawing process and the simulation of their dynamic beha-
viour. In particular, a B-spline model is reconstructed starting from
laser scan measurements on the surface of the components and,
following the isogeometric framework, it is used directly for the
numerical analysis.

Coordinate measuring machines (CMMs) are nowadays useful
tools for reverse engineering and quality inspection applications
[34–36] and, within this family, laser CMMs can produce large
amounts of point data in a short time period without entering in
contact with the scanned surface and are widely adopted for many
applications in industry. However, the point cloud itself is most of
the time not sufficient for an accurate description of the compo-
nent or for the purpose of numerical analysis and, therefore, a sur-
face has to be reconstructed through a reverse engineering process
[37,35,38]. In this context, point cloud fitting with parametric
curves and surfaces, such as B-splines and NURBS, has been
employed starting much earlier than the introduction of IGA
[3,39] because of the wide use of these representations in the
CAD industry and also, from a mathematical point of view, because
of the high-order and tailorable smoothness of splines functions.

Combining the B-spline reconstruction with IGA shell analysis
can therefore be a useful tool for the numerical modelling and sim-
ulation of a component and this work considers the specific case of
deep drawn components. The outline of the paper is the following:
B-spline basis functions and surfaces are introduced in Section 2;
then the surface reconstruction procedure is discussed in Sec-
tion 3.1 and the method used in this work is presented; a brief dis-
cussion of IGA shell analysis is given in Section 4; two practical
examples are studied in Section 5, where the IGA results are com-
pared with experiments; concluding remarks follow in Section 6.

2. Fundamentals of B-spline curves and surfaces

In one dimension, a B-spline function of polynomial order p is
defined by a knot vector N ¼ fn1 6; . . . ;6 nnþpþ1g, with n the num-

ber of basis functions forming the B-spline. The ith (i ¼ 1; . . . ;n) B-
spline basis function Np

i ðnÞ is derived from the knot-vector using
the Cox-De Boor recursive formula [3]:

N0
i ðnÞ ¼

1 if ni 6 n < niþ1;

0 otherwise;

�

Np
i ðnÞ ¼

n� ni
niþp � ni

Np�1
i ðnÞ þ niþpþ1 � n

niþpþ1 � niþ1
Np�1

iþ1 ðnÞ; for p P 1:
ð1Þ

Given two univariate B-spline basis functions Np
i ðnÞ (i ¼ 1; . . . ;n)

and Mq
j ðgÞ (j ¼ 1; . . . ;m), of order p and q respectively, and associ-

ated to the two knot vectors N ¼ fn1 6; . . . ;6 nnþpþ1g and
H ¼ fg1 6; . . . ;6 gmþqþ1g, a bivariate B-spline basis function is
defined as

Rp;q
i;j ðn;gÞ ¼ Np

i ðnÞMq
j ðgÞ ð2Þ

and B-spline surfaces Sðn;gÞ are defined by

Sðn;gÞ ¼
Xn
i¼1

Xm
j¼1

Rp;q
i;j ðn;gÞBi;j; ð3Þ

where Bi;j are the control points. Or, with k ¼ iþ ðj� 1Þm a single
counter replacing i and j,

Sðn;gÞ ¼
XN
k¼1

Rkðn;gÞBk: ð4Þ

3. B-spline surface fitting

3.1. Point cloud fitting

In the context of B-spline and NURBS surface fitting, least
squares methods have been the most used approach, starting from
the first works dated back to the seventies [40,41]. The main idea
of these methods is to consider a reference surface and to update
the position of its control points such that the error between the
surface and the point cloud is minimized.

Given a cloud to be fitted composed of M points denoted by Pl,
this consists in imposing M equations

Pl ¼
XN
k¼1

Rkðnl;glÞBk; l ¼ 1; . . . ;M ð5Þ

or in matrix form

RB ¼ P; ð6Þ
where Pl ¼ ðxl; yl; zlÞ and nl and gl are the parametric coordinates
associated to Pl, whose computation is discussed in the following.

Since in general M � N, Eq. (6) corresponds to an overdeter-
mined system of equations, which is solved in a least square sense
[42]. Such a choice is also motivated by statistical reasoning, as it
effectively reduces the influence of random errors in measure-
ments. In practice, this corresponds to obtaining a square system
by pre-multiplying both sides by RT:

RTRB ¼ RTP: ð7Þ
The solution of this system minimizes the functional

f s ¼ kRB� Pk22; ð8Þ
corresponding to the sum of the squares of the distance from the
points to the surface. Other approaches, based on different norms
such as the L1 and the L1 are also possible [43,44].

In the numerical practice, the direct solution of system (7)
results to be accurate only in some limited cases, such as when a
regular distributed set of points is considered. However, the point
clouds coming from 3D scanners are composed by randomly ori-
ented points, and regions with a lower density of points or holes
can also be present, which results in a poor conditioning and some-
times even in a rank deficiency of RTR. As a consequence, the fitted
surface can present an irregular and oscillatory behaviour.

Therefore, in order to improve the quality of the fitting, regular-
izing terms are often added to functional (8). In particular, a com-
mon practice in curve and surface fitting consists in fairing by
means of energy terms [45–49]. In fact, a spline surface can be seen
as a mathematical representation of a membrane or an elastic plate
and when it oscillates, the corresponding membrane and bending
energy becomes higher. These energy terms are in general a non-
linear function of the surface derivatives and, by following a com-
mon practice of surface fairing, the corresponding linearised terms
are considered in this work:

EmðSÞ ¼
ZZ

kSnk2 þ kSgk2dndg; ð9Þ

EbðSÞ ¼
ZZ

kSnnk2 þ 2kSngk2 þ kSggk2dndg; ð10Þ
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