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In this work, we study the performance of different structure learning algorithms in the 
context of inferring gene networks from transcription data. We consider representatives 
of different structure learning approaches, some of which perform unrestricted searches, 
such as the PC algorithm and the Gobnilp method, and some of which introduce prior 
information on the structure, such as the K2 algorithm. Competing methods are evaluated 
both in terms of their predictive accuracy and their ability to reconstruct the true 
underlying network. A real data application based on an experiment performed by the 
University of Padova is also considered.

© 2016 Published by Elsevier Inc.

1. Introduction

Genes and proteins do not act in isolation – it is the interactions between them that underlie all major functions of a 
living cell, from cell differentiation and signal transduction to metabolic processes and cell division. Better understanding 
of gene networks is one of the central aims of systems biology. Initial approaches to modeling regulatory mechanisms 
relied on systems of differential equations [5], which are, although very refined, unfortunately limited to small systems 
about which we already have a hypothesized theory. However, the invention of the technology for measuring abundance 
of gene transcripts (gene expression), that serve as a proxy for protein abundance, prompted interest in reconstructing the 
regulatory network from observational data. The idea is to reason backwards: deduce the structure of a complex system from 
observations of its behavior. This problem has received much attention in the computational biology literature, resulting in 
a plethora of different models and methods – we refer the interested reader to [2,12,16] for a comprehensive review of the 
field. Here, we focus on Bayesian networks, a special class of probabilistic graphical models.

A Bayesian network is a statistical model consisting of a Acyclic Directed Graph (DAG) and a family F of distributions 
over a set of variables of interest. The graphical structure consists of a set of nodes V and a set of directed edges E . The 
nodes represent random variables, while edges imply the absence of conditional independence. If there is a directed edge 
from u to v , we say that u is a parent of v , and denote by pa(v) a set of parents of v . If we denote by X = (X1, X2, . . . , Xp)�
the variables of the model, the structure of a DAG is associated with their joint distribution through a factorization property
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f (x) = f (x1, x2, . . . , xp) =
p∏

i=1

f [xi | pa(xi)] ,

where f stands for a generic probability distribution function. When Xi , i = 1, 2, . . . , p are discrete, we usually assume 
that all conditional distributions on the right hand side are multinomial, giving rise to a joint multivariate multinomial 
distribution. When they are continuous, we usually assume that all conditional distributions on the right hand side are 
normal, giving rise to a joint multivariate normal distribution Np(μ, �). Here μ = (μ1, . . . , μp)� represents the mean 
vector and � = [σrs], r, s = 1, . . . , p, is the covariance matrix encoding the structure of the network. In fact, the model can 
be equivalently represented in the recursive form

X = α + B X + ε, (1)

where α = (α1, . . . , αp)� is the base level, B = [brs], r, s = 1, . . . p is a matrix of regression coefficients and ε ∼
Np(0, diag

(
θ1, . . . , θp

)
) is the random disturbance. If variables are topologically ordered with respect to the DAG, B will 

be strictly upper triangular and there is a simple relation between the two parameterizations being μ = (I − B)−1α and 
� = (I − B)−1diag

(
θ1, . . . , θp

) [(I − B)−1]T , for more details see [24].
The problem of learning the structure of a Bayesian network from realizations of the random vector X is conceptually 

simple but computationally very complex. Many algorithms, with optimal asymptotic properties, have been proposed [see 
for instance [6,28]]. The problem encountered when applying these algorithms to gene networks is the small sample size – 
very often the number of considered genes p exceeds the number of statistical units n. This typical property of biological 
datasets poses serious limitations for structure learning, explored in detail in [18]. To attenuate this problem, several authors 
exploited the expected sparsity of biological networks [4,26]. Another possible remedy is to use other sources of information 
and include them in the learning process. This seems reasonable, since technological advances seen in the last two decades 
drastically reduced experimental costs and made measurements of biological activity more readily available.

Much of the experimentally obtained knowledge is stored in online public databases. One instance is represented by 
pathway diagrams, which are elaborate diagrams featuring genes, proteins and other small molecules, showing how they 
work together to achieve a particular biological effect. From a technical point of view, they are networks and can be repre-
sented through a graph where genes and their connections are, respectively, nodes and edges. We will study the effect of 
including some of the information they carry into the learning process. More specifically, for a set of genes of interest we 
will specify a topological ordering according to the pathway information, and then pass this ordering to the algorithms that 
use prior information.

In this empirical comparison, we consider representatives of different structure learning approaches, such as the con-
straint based PC algorithm [28], the exact Gobnilp method [8] and the score based K2 algorithm [6]. The software used is a 
combination of tools available in Hugin [21], Gobnilp [8] and R [23]. We perform an extensive simulation study, considering 
two data generating mechanisms, with the aim of verifying whether the approaches that include prior information, such 
as K2, perform better than those that rely on data only. In addition to simulated data, we also consider real data from the 
Drosophila melanogaster experiment. In this experiment, performed by the University of Padova [11], researchers measured 
the expression of genes participating in the WNT signaling pathway in a fruit fly.

The outline of the paper is as follows. In Section 2, we introduce algorithms considered in this work, we propose the 
data driven categorization procedure for continuous gene expression measurements, and describe the method we used to 
evaluate the performance of algorithms. Details and results of the simulation studies are given in Section 3, while the eval-
uation on the real dataset is given in Section 4. Conclusions, some limitations of the present work and future perspectives 
are given in Section 5.

2. Structure learning algorithms

Structure learning algorithms can be roughly divided into two groups: (1) the score based approaches that search the 
space of possible structures to find the one that maximizes the score (reflecting the goodness of fit and model parsimony), 
and (2) the constraint based approaches, that test a large number of conditional independencies between variables and then 
find the structure that best fits the set of inferred relations. Computational complexity of both approaches is prohibitive 
for all but small problems, and so some strategy for restricting the search space and reducing the number of performed 
tests is usually adopted. In that case, one does not have a guarantee that the inferred structure will be globally optimal, but 
must rely on proven asymptotic validity. Recently, a number of approaches to structure learning that do not rely on a search 
strategy, but explore the entire space of DAGs, have been proposed. Two major directions are dynamic programming and 
integer linear programming. For the former, see for instance [20]. We consider a representative of the latter: the approach 
introduced in [7], where the problem of structure learning is translated into an optimization problem with a linear objective 
function and a set of linear constraints (as well as integrality constraints on the variables).

As already stated, in this empirical study we consider representatives of different structure learning strategies: a number 
of variants of the PC algorithm [28], the K2 algorithm [6] and the exact Gobnilp method [8]. Of the examined approaches, the 
K2 algorithm and all modifications of the K2 algorithm here considered, include the prior information. The prior information 
is in the form of the topological ordering of the studied genes. In the simulation study, we specify the topological ordering 
according to the true underlying graph. In the real study, we relied on public databases of biological knowledge. In particular, 
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